
Evolutionary Computing
Robert M. Patton, Xiaohui Cui, Yu Jiao, and Thomas E. Potok

Oak Ridge National Laboratory

Introduction

Information and data continue to overwhelm humans. Yet, this same information and
data often holds the key of success to many human endeavors through the patterns they
contain. Unfortunately, the rate at which information overwhelms humans is
significantly more than the rate at which humans have learned to process, analyze, and
leverage this information. To overcome this challenge, new methods of computing must
be formulated, and scientist and engineers have looked to nature for inspiration in
developing these new methods.

For centuries, nature has amazed and inspired humanity. From paintings to sculptures to
weapons of war, evidence of this inspiration from nature abounds. Now, as computing
technology continues to advance, this inspiration continues. Nature-inspired computing
has emerged as new paradigm for computing, and has rapidly demonstrated its ability to
solve real-world problems where traditional techniques have failed. This field of work
has now become quite broad and encompasses areas ranging from artificial life to neural
networks. This chapter focuses specifically on two sub-areas of nature-inspired
computing: Evolutionary Algorithms and Swarm Intelligence.

The following sections will discuss the theoretical background of these sub-areas as well
demonstrate some real-world applications based on each. Finally, the chapter will
conclude with future trends and directions in these areas.

Evolutionary Algorithms

Charles Darwin radically changed the way evolutionary biology is viewed in his work
entitled “Origin of Species” published in 1859 (Darwin 1859). In this work, Darwin
describes his theory of natural selection based on his experience and observations of
nature around the world. Darwin states that there is an implicit struggle for survival
because of species producing more offspring than can grow to adulthood and that food
sources are limited. Because of this implicit struggle, sexually reproducing species create
offspring that are genetic variants of the parents. Darwin theorizes that it is this genetic
variation that enables some offspring to survive in a particular environment much better
than other offspring with different genetic variations. As a direct result of this
“enhanced” genetic variation, these offspring not only survive in the environment, but go
on to reproduce new offspring that carry some form of this enhanced genetic variation.
In addition, those offspring that are not as suited for the environment do not pass on their
genetic variation to offspring, but rather die off. Darwin then theorizes that over many
generations of reproduction, new species that are highly adapted to their specific
environments will emerge. It is this theory of natural selection that forms the theoretical
foundation for the field of Evolutionary Algorithms (EA).

Following in the footsteps of Darwin, John Holland dramatically altered the computer
science and artificial intelligence fields in 1975 with his publication entitled “Adaptation
in Natural and Artificial Systems.” (Holland 1975) In this work, Holland describes a

mathematical model for the evolutionary process of natural selection, and demonstrates
its use in a variety of problem domains. This seminal work by Holland created the fertile
soil by which the field of Evolutionary Algorithms grew and thrived. In the same year
and under the direction of Holland, Ken De Jong’s dissertation entitled “An Analysis of
the Behavior of a Class of Genetic Adaptive Systems” helps fully demonstrate the
possibilities of using evolutionary algorithms for problem solving (De Jong 1975). In
1989, the field of evolutionary algorithms received a fresh injection of enthusiasm with
the publication of David Goldberg’s work entitled “Genetic Algorithms in Search,
Optimization, and Machine Learning” (Goldberg 1989). The momentum of development
continued with Melanie Mitchell’s 1996 work entitled “An Introduction to Genetic
Algorithms,” which helped to further solidify the theoretical foundations of EA’s
(Mitchell 1996). Ever since then, the field has continued to grown and the practical
applications of EA’s are abounding with success stories (Haupt 1998; Chambers 2000;
Coley 2001).

With the explosive growth of the EA field, there has also been an expansion in the variety
of EA types. Some of these variations include Genetic Algorithms (GA’s), Evolutionary
Strategy (ES), Genetic Programming (GP), and Learning Classifier Systems (LCS). In
addition to these, a new variety is beginning to emerge known as Quantum-Inspired EA
(QEA) (Han 2003). The primary distinction between each of these is the representation
used for the population of individuals. For example, GA’s are traditionally associated
with using a binary number representation, while GP’s use a tree structure to represent
individuals. In some cases, such as LCS, a distinction is also made in the form of the
fitness function used to evaluate the individual. These different forms of EA’s are
necessary to solve different types of problems depending on the domain. Despite these
differences, the fundamental philosophy behind each is the same: natural selection and
survival of the fittest.

In brief, an EA is a search algorithm, but with key features that distinguish it from other
search methods including:

• A population of individuals where each individual represents a potential solution
to the problem to be solved

• A fitness function that evaluates the utility of each individual as a solution

• A selection function that selects individuals for reproduction based on their
fitness.

• Idealized genetic operators that alter selected individuals to create new individuals
for further testing. These operators, e.g. crossover and mutation, attempt to
explore the search space without completely losing information (partial solutions)
that is already found.

Figure 1 illustrates the basic steps of an EA. The population may be initialized either
randomly or with user-defined individuals. The EA then iterates through an
evaluate-select-reproduce cycle until either a user-defined stopping condition is satisfied
or the maximum number of allowed generations is exceeded.

procedure EA
{

initialize population;
while termination condition not satisfied do
{

 evaluate current population;
 select parents;
 apply genetic operators to parents to create offspring;
 set current population equal to be the new offspring
population;

}

Figure 1. Basic steps of a typical evolutionary algorithm

The use of a population allows the EA to perform parallel searches into multiple regions
of the solution space. Operators such as crossover allow the EA to combine discovered
partial solutions into more complete solutions. As a result, the EA searches for small
building blocks in parallel, then iteratively recombine small building blocks to form
larger and larger building blocks. In the process, the EA attempts to maintain a balance
between explorations for new information and exploitation of existing information. Over
time, the EA is able to evolve populations containing more fit individuals or better
solutions. For more information about EAs, the reader is referred to (Mitchell 1996;
Coley 2001).

Swarm Intelligence

More than 50 years ago, biologists have reported that a different kind of intelligence form
could emerge from some social insects, fish, birds, and mammals (Bonabeau, Henaux et
al. 1998; Bonabeau, Dorigo et al. 1999). Inside an anthill, a termite swarm, a bee colony,
a bird flock, a fish school, each individual does not have the requisite neuronal capacity.
However, the mere interaction among a great number of individually simple creatures can
lead to the emergence of intelligence, which is reactive and adaptable to the environment
(Bonabeau, Dorigo et al. 1999). In insect societies, the whole system is organized in a
decentralized model. A large amount of autonomous units with a relatively simple and
probabilistic behavior is distributed in the environment. Each unit is provided only with
local information. Units do not have any representation or explicit knowledge of the
global structure they are supposed to produce or in which they evolve. They have no plan
at all. In other words, the global "task" is not explicitly programmed within individuals,
but emerges after the succession of a high number of elementary interactions between
individuals, or between individual and environment. This type of collective intelligence
model built from multiple simple individual entities inspired a new discipline in computer
science: Swarm Intelligence.

Swarm Intelligence is an artificial intelligence technique involving studies of collective
behaviors in decentralized systems. It is the modeling and application of group
interactions found in social insects(Dorigo, Bonabeau et al. 2000). Beni and Wang (Wang
and Beni 1988; Wang and Beni 1989; Wang and Beni 1990) first introduced the term of
Swarm Intelligence in the context of cellular robotic systems. In their experiments, many
agents occupy one or two-dimensional environments to generate patterns and to self-
organize through interaction with the nearest neighbor. Bonabeau (Bonabeau, Henaux et
al. 1998; Bonabeau, Dorigo et al. 1999) extended the concept of swarm intelligence to

any work involved with algorithm design or distributed problem-solving devices. He
gave a definition of Swarm Intelligence as “any attempt to design algorithms or
distributed problem-solving devices inspired by the collective behavior of social insect
colonies and other animal societies”. This last definition is wider and more up-to-date
than the original one that only referred to the cellular robotics framework.

Currently, popular research directions in Swarm Intelligence are grounded on following
four research areas: Flocking (Reynolds 1987), Swarm Robotics (Wang and Beni
1988)(Wang and Beni 1990), Ant Colony Optimization (ACO) (Bonabeau, Dorigo et al.
1999) and Particle Swarm Optimization (PSO) (Eberhart and Kennedy 1995).

Flocking

Flocking model was first proposed by Craig Reynolds(Reynolds 1987). It is a bio-
inspired computational model for simulating the animation of a flock of entities called
“boid”. It represents group movement as seen in bird flocks and schools of fish in nature.
In this model, each boid makes its own decisions on its movement according to a small
number of simple rules that react to the neighboring mates in the flock and the
environment it can sense. The simple local rules of each boid generate complex global
behaviors of the entire flock.

The Flocking model consists of three simple steering rules that need to be executed at
each instance over time. Three basic rules include: (1) Separation: Steering to avoid
collision with other boids nearby. (2) Alignment: Steering toward the average heading
and match the velocity of the neighbor flock mates. (3) Cohesion: Steering to the average
position of the neighbor flock mates. The three basic rules are sufficient to reproduce the
moving behaviors of a single species bird flock on the computer. However, experiments
indicate these three rules will eventually result in all boids in the simulation forming a
single flock. It cannot reproduce the real phenomena in the nature: the birds or other herd
animals not only keep themselves within a flock that is composed of the same species or
the same colony creatures, but also keep two or multiple different species or colony
flocks separated.

Ant Colony Optimization

The Ant Colony Optimization is a heuristic algorithm that is inspired from the food
foraging behavior of ants. Ant colonies would be able to accomplish tasks that would be
impossible to be accomplished by a single individual ant. One type of tasks is seeking
the shortest path from their nest to the food source. As ants forage they deposit a trail of
slowly evaporating pheromone. Ants then use the pheromone as a guide for them to find
the between the nest and the food source if they find one. All foraging ants use the
pheromone as a guide regardless of whether the pheromone is deposited by itself or other
ants. Pheromones accumulate when multiple ants travel through same path. The
pheromones on the tail evaporate as well. Those ants that reach the food first return
before the others. Their return trail’s pheromone is now stronger than the other ant trails
that have not found food or have longer distances from the food source to nest because
the return trail has been traveled twice. This high pheromone volume trail attracts other
ants following the trail. The pheromone content on this trail become stronger as the trail
is increasing traveled and other trail’s pheromone content will become weaker because
fewer ants travel those trails and pheromone evaporates. Eventually, the trail with

highest content of pheromone and traveled by most of foraging ants will be shortest tail
between food sources to nest.

Marco Dorigo introduced the first ACO system in his Ph.D. thesis (Dorigo 1992). The
idea of the ACO algorithm is to mimic the ant’s foraging behavior with “simulated ants”
walking around the graph searching for the optimal solution. In the ACO algorithm, each
path followed by a "simulated ant" represents a candidate solution for a given problem.
The simulated ant “deposits” pheromone on the path and the volume of the pheromone is
proportional to the quality of the corresponding candidate solution for the target problem.
The searching ants choose the path(s) with the higher volume of pheromone with greater
probability than the path(s) with low pheromone volume. Eventually, the searching ants
will converge on the path that represent the optimum or near optimum solution for the
target problem.

Particle Swarm Optimization

Particle Swarm Optimization is a population based stochastic optimization technique that
can be used to find an optimal, or near optimal, solution to a numerical and qualitative
problem. PSO was originally developed by Eberhart and Kennedy in 1995 (Eberhart and
Kennedy 1995), inspired by the social behavior of flocking birds or a school of fish.

In the PSO algorithm, birds in a flock are symbolically represented as particles. These
particles can be considered as simple agents “flying” through a problem space. A
problem space in PSO may have as many dimensions as needed to model the problem
space. A particle’s location in the multi-dimensional problem space represents one
solution for the problem. When a particle moves to a new location, a different solution is
generated. This solution is evaluated by a fitness function that provides a quantitative
value of the solution’s utility.

The velocity and direction of each particle moving along each dimension of the problem
space are altered at each generation of movement. It is the particle’s personal experience
combined with its neighbors’ experience that influences the movement of each particle
through a problem space. For every generation, the particle’s new location is computed
by adding the particle’s current velocity V-vector to its location X-vector.
Mathematically, given a multi-dimensional problem space, the ith particle changes its
velocity and location according to the following equations (Clerc 1999; Clerc and
Kennedy 2002):

))(**)(**(* 2211 idgdidididid xprandcxprandcvwv −+−+=

Equation 1

ididid vxx +=

Equation 2

where, pid is the location of the particle where it experiences the best fitness value; pgd is
the location of the particle experienced the highest best fitness value in the whole
population; xid is the particle current location; c1 and c2 are two positive acceleration
constants; d is the number of dimensions of the problem space; rand1, rand2 are random
values in the range of (0,1). w is called the constriction coefficient (Clerc and Kennedy
2002) and it is computed according to Equation 3:

ϕϕϕ 42

2
2 −−−

=w

Equation 3

4,21 >+= ϕϕ cc

Equation 4

PSO versus Evolutionary Computing

PSO shares many similarities with evolutionary computational techniques. Both systems
are initialized with a collection of random solutions for searching the optima in a problem
space by updating generations. However, unlike most other population-based
evolutionary algorithms, PSO is motivated by cooperative social behavior instead of
survival of the fittest. In evolutionary computation, the solution change is driven by the
genetic recombination and mutations. In the case of PSO, it is by learning from peers.
Each particle in PSO has memory to track the best solution it has experienced, as well as
that of its neighbors. This history of the best solutions plays an important role in
generating a new position, that is, a potential problem solution.

Applications of EA and SI

To illustrate the value of EA and SI techniques for revealing data patterns, this section
discusses two different methods for analyzing data. For each of these methods, the focus
area is that of text analysis. However, their applicability is not limited to this domain.

In text analysis, there is a variety of challenges. For illustration purposes, the primary
challenge is that a massive data set in the form of unstructured text within individual
documents must be analyzed. For example, a data set may consist of 1,000 documents
(of various lengths), and a human must analyze and understand the data that is contained
within these 1,000 documents. To make matters more complicated, this document set
may even be streaming, so that 1,000 documents may arrive every 1 hour from various
sources. To address this daunting challenge, this section will illustrate the application of
EA and SI for pattern analysis.

Adaptive Sampling using an Evolutionary Algorithm

To characterize effectively a large and streaming set of news articles, the following goals
are proposed in order to create an algorithm that provides a useful result to a human
analyst, it must:

1. Be capable of sufficiently reducing the data to manageable levels

2. Be able to provide a fast and accurate processing of massive amounts of data

3. Efficiently and effectively deal with duplicate data

4. Be able to work with streaming data

5. Not require prior knowledge concerning the data set

To address the five goals identified, an evolutionary algorithm will be discussed that
performs an adaptive, maximum variation sampling (MVS) technique. It is well known
that an evolutionary algorithm performs very well for large search spaces and is easily

scalable to the size of the data set. In addition, EA’s are also particularly suited for
parallelization (Tanese 1989; Muehlenbein 1989; Mutalik 1992). To understand better
the need for scalability and the size of the search space in this problem domain, consider
a document set with only 10,000 news articles in it. Now, suppose an analyst needs to
reduce this data set to 200 representative articles (only 2% of the entire data set). In that
case, there are approximately 1.7 x 10424 different combinations of documents that could
be used to create a single sample. Clearly, a brute force approach is unacceptable. In
addition, many of the combinations would consist of duplicate data, which would lower
the quality of the result for the analysts. Ultimately, an intelligent and scalable approach
such as a evolutionary algorithm is needed to help address goals 1 and 2. As
demonstrated by (Mutalik 1992), a parallel genetic algorithm is well suited to a
combinatorial optimization problem.

The remainder of the goals is addressed via the MVS technique. Since this technique is
searching for data points that maximize diversity, this approach will avoid duplicate data
from being included in the results. In addition, it does not require that all duplicate data
be first identified. This is a tremendous advantage since duplicate data can often be a
significant portion of the data set. Furthermore, the MVS technique does not require the
data set to remain static, but a dynamic set is easily handled. Finally, the MVS technique
is a sampling technique and therefore does not require prior knowledge of the data set,
and will naturally reduce the data set to the appropriate size as determined by the
analysts.

Two of the most critical components of implementing a GA are the encoding of the
problem domain into the GA population and the fitness function to be used for evaluating
individuals in the population. To encode the data for this particular problem domain,
each individual in the population represents one sample of size N. Each individual
consists of N genes where each gene represents one document (each document is given a
unique numeric identifier) in the sample. For example, if the sample size were 15, each
individual would represent one possible sample and consist of 15 genes that represent 15
different documents. This representation is shown in Figure 2.

Document 1 Document 2 Document N …
Gene 1 Gene 2 Gene N …

Sample Size is N

Figure 2. Genetic representation of each individual

The fitness function evaluates each individual according to some predefined set of
constraints or goals. In this particular application, the goal was to achieve an ideal
sample that represents the maximum variation of the data set without applying clustering
techniques or without prior knowledge of what the categories of the population are. To
measure the variation (or diversity) of our samples, the summation of the similarity
between the vector space models of each document (or gene) in the sample is calculated
as shown in Equation 5.

∑∑
= +=

=
N

j

N

jk

kiGenejiGeneSimilarityiFitness
0 1

)),(),,(()(

Equation 5. Fitness function

In Equation 5, the Similarity function calculates the distance between the vector space
models of gene j and k of the individual i. This distance value ranges between 0 and 1
with 1 meaning that the two documents are identical and 0 meaning they are completely
different in terms of the words used in that document. Therefore, in order to find a
sample with the maximum variation, Equation 5 must be minimized. In this fitness
function, there will be (N2 – N) / 2 comparisons for each sample to be evaluated.

The defined fitness function can be computationally intensive for large sample sizes or
for data sets with lengthy news articles. To compensate for this, the GA developed for
this work was designed as a global population parallel GA. For this particular work, the
selection process used an “above average” measure for the selection. For each
generation, an average fitness value is calculated for the population. Individuals with
fitness values that are above this average are selected as parents, while the other
individuals are discarded. The crossover and mutation operators are 1-point operators.
The crossover rate was set to 0.6. The mutation rate was set to 0.01.

The data set used for the tests described previously was the Reuters-21578 Distribution
1.0 document collection (Lewis 1997). This corpus consists of 21,578 Reuters news
articles from 1987, and was specifically developed for categorization research purposes.
As a result, this corpus includes additional information concerning the documents in the
set. This corpus was chosen due to its availability, its size and for the additional
information (e.g., category information) for each document, which will be used for future
comparisons and research. To evaluate the performance of this implementation, several
tests were conducted, and are briefly summarized in the following table.

Table 1. List of tests performed

Test
Num.

Corpus
Size

Sample
Size

Known
Duplicates

1-3 1,000 15 No

4-6 9,494 135 No

7-9 21,578 200 No

10-12 1,000 15 Yes

13-15 9,494 135 Yes

For each test, ten runs were performed with a population size of 100 and 100 generations.
However, on test 7 – 9, only 3 runs of 400 generations each with a population size of 100
were performed due to time constraints. After conducting the defined test and analyzing
the results, several interesting observations are evident. The hypothesis that the MVS-
GA would be “immune” to duplicate data or take advantage of it did appear to hold true.
There is a very slight decrease in fitness values as duplicates are added. While this is not
as big of a decrease as was expected, it still supports the hypothesis that the MVS-GA is
not dramatically affected by duplicate data. In addition, this approach successfully
reduces massive data amounts to manageable levels. Finally, while the results
demonstrated several significant relationships and behaviors, future work will be needed
to further understand these relationships and to develop improved parameter control
functions.

Distributed Flocking Algorithm for Information Stream Clustering Analysis

Document clustering analysis plays an important role in improving the accuracy of
information retrieval. In this section, a novel Flocking based algorithm for document
clustering analysis is presented. This approach uses stochastic and heuristic principles
discovered from observing bird flocks or fish schools. Unlike other partition-clustering
algorithm such as K-means, the Flocking based algorithm does not require initial
partition seeds. The algorithm generates a clustering of a given set of data through the
embedding of the high-dimensional data items on a two-dimensional grid for easy
clustering result retrieval and visualization. Inspired by the self-organized behavior of
bird flocks, each document object is represented as a flock boid (i.e., bird). The simple
local rules followed by each flock boid results in the entire document flock generating
complex global behaviors, which eventually result in a clustering of the documents. The
efficiency of the algorithm is evaluated with both a synthetic dataset and a real document
collection that includes 100 news articles collected from the Internet. Results show that
the Flocking-clustering algorithm achieves better performance compared to the K-means
and the Ant clustering algorithm for real document clustering.

In (Cui, Gao et al. 2006), a new Multiple Species Flocking (MSF) model is proposed to
model the multiple species bird flock behaviors. In the MSF model, in addition to the
three basic action rules in the Flocking model, a fourth rule, “feature similarity rule”, is
added into the basic action rules of each boid to influence the motion of the boids. Based
on this rule, the flock boid tries to stay close to other boids that have similar features and
stay away from other boids that have dissimilar features. The strength of the attracting
force for similar boids and repulsion force for dissimilar boids is inversely proportional to
the distance between the boids and the similarity value between the boids’ features.

One application of the MSF model is document clustering (Cui and Potok 2006).
Inspired by the bird’s ability of maintaining a flock as well as separating different species
or colony flocks, the MSF clustering algorithm uses a simple and heuristic way to cluster
document datasets. In the MSF clustering algorithm, each document is projected as a
boid in a 2D virtual space. The document is represented as the feature of the boid. The
boids that share similar document features (same as the bird’s species and colony in
nature) will automatically group together and became a boid flock. Other boids that have
different document features will stay away from this flock. After several iterations, the
simple local rules followed by each boid results in generating complex global behaviors
of the entire document flock, and eventually a document clustering result is emerged.

One synthetic dataset and one real document collection dataset were used for evaluating
the performance of the clustering algorithms. The synthetic dataset consists of four data
types, each including 200 two dimensional (x, y) data objects. x and y are distributed
according to Normal distribution. This is the same dataset that has been used by Lumer
and Faieta for their Ant clustering algorithm(Lumer and Faieta 1994). There are many
references in the document clustering literature (Handl and Meyer 2002; Ramos and
Merelo 2002) to the use of this synthetic dataset as a performance evaluation benchmark.
In the real document collection dataset, a document collection that contains 100 news
articles was used. These articles are collected from the Internet at different time stages
and have been categorized by human experts and manually clustered into 12 categories.
A description of the test dataset is given in Table 2.

Table 2. The document collection dataset

 Category/Topic Number of articles

1 Airline Safety 10

2 Amphetamine 10

3 China and Spy Plane and Captives 4

4 Hoof and Mouth Disease 9

5 Hurricane Katrina 5

6 Iran Nuclear 8

7 Korea and Nuclear Capability 10

8 Mortgage Rates 10

9 Ocean and Pollution 6

10 Saddam Hussein and WMD 8

11 Storm Irene 10

12 Volcano 10

In order to reduce the impact of the length variations of different documents, each
document vector is normalized so that it is of unit length. Each term represent one
dimension in the document vector space. The total number of terms in the 100 stripped
test documents is 4,790, which means the document collection has 4,790 dimensions.

The different clustering methods were evaluated over data sets representing distinct
clustering difficulties in the same experimental conditions in order to appreciate better the
performance of each clustering algorithm. The number of iterations in each algorithm
was fixed at 300 iterations. First, the K-Means, Ant clustering and Flocking clustering
were evaluated over the synthetic dataset. Second, the algorithms were tested over the
real document datasets. For each dataset, each algorithm was run 20 times and the mean
number of clusters found (since the K-Means algorithm uses the prior knowledge of the
cluster number of the data collection, the clustering number it produces is exactly equal
to the real class number) and the F-measure of the clustering results. Table 3 shows the
results obtained from both the synthetic and the real datasets. The three clustering
algorithms all work well in the synthetic dataset. When these three algorithms are
applied to the 100 news article dataset, according to the results shown in Table 3, it was
determined that 300 iterations was not enough for the Ant clustering algorithm to
generate an acceptable clustering result. However, 300 iterations are sufficient for the
Flocking-clustering algorithm to generate good clustering results from the document
dataset.

Results show that the K-means algorithm implementation needs much less computing
time and iterations to reach a stable clustering result than the other two algorithms.
However, the drawback of the K-means clustering algorithm is that the average F-
measure value of the clustering results are lower than Flocking algorithm. The K-means
algorithm also requires the probable number of clusters of a dataset before clustering it.
For the Flocking clustering implementation and the Ant clustering implementation, the

major computing time cost is the document similarity and dissimilarity calculations. Our
experiment results show that it takes both implementations nearly same computing time
to finish the initial 20-30 iterations. However, after that, the flocking implementation’s
computing time of each iteration quickly increases. The reason for this is that, in the
Flocking implementation, the clustering result is generated very quickly and the boids
with similar features quickly converge together, therefore, boids need to calculate the
similarity values with multiple neighboring flock mates during the cluster refining stage.
For the Ant clustering algorithm implementation, our experiments show that even after
thousands of iterations, the implementation still cannot generate an acceptable visual
clustering result. The fact that, after several thousands of iterations, the computing time
of each iteration is still low may indicate most document objects are still randomly
distributed in the grid space.
Table 3. The results of K-means, Ant clustering and Flocking clustering Algorithm on synthetic and

real datasets after 300 iterations

 Algorithms Average
cluster number

Average F-
measure value

Flocking 4 0.9997

K-means (4) 0.9879 Synthetic
Dataset

Ant 4 0.9823

Flocking 10.083 0.8058

K-means (12) 0.6684 Real Document
Collection

Ant 1 0.1623

In this new Flocking based document-clustering algorithm, each document in the dataset
is represented by a boid. Each boid follows four simple local rules: the alignment rule,
the separation rule, the cohesion rule, and the feature similarity / dissimilarity rule, to
move in the virtual space. Boids following these simple local rules form complex and
emergent global behaviors for the entire flock, and eventually these boids representing
documents form a flock or cluster. Different flocks represent different document clusters.
Similar to another bio-inspired clustering algorithm, the Ant clustering algorithm, the
Flocking algorithm does not need initial partitions or the prior knowledge about the class
number for each dataset. The advantage of the Flocking-clustering algorithm is the
heuristic principle of the flock’s searching mechanism. This heuristic searching
mechanism helps boids quickly form a flock. Results from experiments evaluating these
three different clustering algorithms illustrate that the Flocking-clustering algorithm can
generate a better clustering result with fewer iterations than that of the Ant clustering
algorithm. The clustering results generated by the Flocking algorithm can be easily
visualized and recognized by an untrained human user. Since the boid in the algorithm
continues flying in the virtual space and joining the flock it belongs to, new results can be
quickly re-generated when adding or deleting document boids at run time. This feature
allows the Flocking algorithm to be applied in clustering and analyzing dynamically
changing information stream and real time visualizing of results for a human.

Future Trends & Conclusions

As discussed in the previous sections, the area of Evolutionary Computing is rich in
application, and has very rapidly become a new paradigm for computing. However, the
potential for such computing has not been completely harnessed. Several areas are now
emerging that will extend the power of Evolutionary Computing even further. Much of
the driving force behind these areas stems from the challenge of dynamic and multi-
objective optimization problems. Consequently, the future trends of EC will involve
hybrid approaches that leverage the strengths of each technique to create a new technique
that will be more robust to changing problem spaces. For example, SI techniques that
can learn and adapt via the use of EA techniques, or EA techniques that utilize SI
techniques for evaluating potential solutions. In addition, creative evolutionary
techniques will be explored that will help expand the capability of current EC technique
to create new hypothetical solutions that even the EC designers would not have imagined.
These future capabilities will only strengthen the value of EC for data pattern analysis.

References

Darwin, C. (1859), On the Origin of Species by Means of Natural Selection, or the
Preservation of Favoured Races in the Struggle for Life, London: John Murray.

Chambers, L., Ed. (2000), The Practical Handbook of Genetic Algorithms: Applications,
Second Edition, Chapman & Hall / CRC.

Coley, D.A. (2001), An Introduction to Genetic Algorithms for Scientists and Engineers,
World Scientific, River Edge, NJ.

De Jong, K. (1975), An Analysis of the Behavior of a Class of Genetic Adaptive Systems,
Doctoral Dissertation, University of Michigan.

Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley.

Han, Kuk Hyun (2003), Quantum-Inspired Evolutionary Algorithm, Doctoral
Dissertation, Korea Advanced Institute of Science and Technology.

Haupt, R.L. & Haupt, S. E. (1998), Practical Genetic Algorithms, John Wiley & Sons,
Inc. New York, NY.

Holland, J.H. (1975), Adaptation in Natural and Artificial Systems. University of
Michigan Press.

Mitchell, M. (1996), An Introduction to Genetic Algorithms, MIT Press.

Muehlenbein, H. (1989) Parallel Genetic Algorithms, Population Genetics, and
Combinatorial Optimization, Proc. of the Third International Conference on
Genetic Algorithms, Morgan Kaufmann.

R. Tanese, R. (1989) Distributed Genetic Algorithms for Function Optimization, Doctoral
Dissertation, University of Michigan.

Mutalik, P.P., et al. (1992), Solving Combinatorial Optimization Problems Using Parallel
Simulated Annealing and Parallel Genetic Algorithms, Proceedings of the 1992

ACM/SIGAPP symposium on Applied computing: technological challenges of the
1990's, pp 1031 – 1038.

Lewis, D.D., (1997), Reuters-21578 Distribution 1.0, Retrieved March 2007 from
http://kdd.ics.uci.edu/databases/reuters21578/

Dorigo, M., 1992, Optimization, Learning and Natural Algorithms (in Italian). Doctoral
Dissertation, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy.

Bonabeau, E., M. Dorigo, et al. (1999). Swarm intelligence from natural to artificial
systems. New York, Oxford University Press.

Bonabeau, E., F. Henaux, et al. (1998). Routing in telecommunications networks with
ant-like agents. 1437: 60.

Clerc, M. (1999). The swarm and the queen: towards a deterministic and adaptive particle
swarm optimization. Proceedings of the 1999 Congress on Evolutionary
Computation, Washington, DC, USA, IEEE.

Clerc, M. and J. Kennedy (2002). "The particle swarm-explosion, stability, and
convergence in a multidimensional complex space." IEEE Transactions on
Evolutionary Computation 6(1): 58-73.

Cui, X., J. Gao, et al. (2006). "A Flocking Based Algorithm for Document Clustering
Analysis." Journal of System Architecture(Special issue on Nature Inspired
Applied Systems).

Cui, X. and T. E. Potok (2006). A distributed flocking approach for information stream
clustering analysis, Las Vegas, NV, United States, Institute of Electrical and
Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United
States.

Dorigo, M., E. Bonabeau, et al. (2000). "Ant algorithms and stigmergy." Future
Generation Computer Systems 16(8): 851-871.

Eberhart, R. and J. Kennedy (1995). A new optimizer using particle swarm theory.
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, Nagoya, Japan, IEEE.

Handl, J. and B. Meyer (2002). Improved ant-based clustering and sorting in a document
retrieval interface, Granada, Spain, Springer-Verlag.

Lumer, E. D. and B. Faieta (1994). Diversity and adaptation in populations of clustering
ants. Proceedings of 3rd International Conference on Simulation of Adaptive
Behaviour, 8-12 Aug. 1994, Brighton, UK, MIT Press.

Ramos, V. and J. Merelo (2002). Self-Organized Stigmergic Document Maps:
Environment as a Mechanism for Context Learning. 1st Spanish Conference on
Evolutionary and Bio-Inspired Algorithms, Merida, Spain.

Reynolds, C. W. (1987). "FLOCKS, HERDS, AND SCHOOLS: A DISTRIBUTED
BEHAVIORAL MODEL." Computer Graphics (ACM) 21(4): 25-34.

Wang, J. and G. Beni (1988). Pattern generation in cellular robotic systems, Arlington,
VA, USA, Publ by IEEE, Piscataway, NJ, USA.

Wang, J. and G. Beni (1989). Cellular robotic system with stationary robots and its
application to manufacturing lattices, Albany, NY, USA, Publ by IEEE,
Piscataway, NJ, USA.

Wang, J. and G. Beni (1990). Distributed computing problems in cellular robotic
systems, Ibaraki, Japan, IEEE.

http://kdd.ics.uci.edu/databases/reuters21578/

