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Introduction 

Information and data continue to overwhelm humans.  Yet, this same information and 
data often holds the key of success to many human endeavors through the patterns they 
contain.  Unfortunately, the rate at which information overwhelms humans is 
significantly more than the rate at which humans have learned to process, analyze, and 
leverage this information.  To overcome this challenge, new methods of computing must 
be formulated, and scientist and engineers have looked to nature for inspiration in 
developing these new methods. 

For centuries, nature has amazed and inspired humanity.  From paintings to sculptures to 
weapons of war, evidence of this inspiration from nature abounds.  Now, as computing 
technology continues to advance, this inspiration continues.  Nature-inspired computing 
has emerged as new paradigm for computing, and has rapidly demonstrated its ability to 
solve real-world problems where traditional techniques have failed.  This field of work 
has now become quite broad and encompasses areas ranging from artificial life to neural 
networks.  This chapter focuses specifically on two sub-areas of nature-inspired 
computing:  Evolutionary Algorithms and Swarm Intelligence. 

The following sections will discuss the theoretical background of these sub-areas as well 
demonstrate some real-world applications based on each.  Finally, the chapter will 
conclude with future trends and directions in these areas. 

Evolutionary Algorithms 

Charles Darwin radically changed the way evolutionary biology is viewed in his work 
entitled “Origin of Species” published in 1859 (Darwin 1859).  In this work, Darwin 
describes his theory of natural selection based on his experience and observations of 
nature around the world.  Darwin states that there is an implicit struggle for survival 
because of species producing more offspring than can grow to adulthood and that food 
sources are limited.  Because of this implicit struggle, sexually reproducing species create 
offspring that are genetic variants of the parents.  Darwin theorizes that it is this genetic 
variation that enables some offspring to survive in a particular environment much better 
than other offspring with different genetic variations.  As a direct result of this 
“enhanced” genetic variation, these offspring not only survive in the environment, but go 
on to reproduce new offspring that carry some form of this enhanced genetic variation.  
In addition, those offspring that are not as suited for the environment do not pass on their 
genetic variation to offspring, but rather die off.  Darwin then theorizes that over many 
generations of reproduction, new species that are highly adapted to their specific 
environments will emerge.  It is this theory of natural selection that forms the theoretical 
foundation for the field of Evolutionary Algorithms (EA). 

Following in the footsteps of Darwin, John Holland dramatically altered the computer 
science and artificial intelligence fields in 1975 with his publication entitled “Adaptation 
in Natural and Artificial Systems.”  (Holland 1975)  In this work, Holland describes a 



mathematical model for the evolutionary process of natural selection, and demonstrates 
its use in a variety of problem domains.  This seminal work by Holland created the fertile 
soil by which the field of Evolutionary Algorithms grew and thrived.  In the same year 
and under the direction of Holland, Ken De Jong’s dissertation entitled “An Analysis of 
the Behavior of a Class of Genetic Adaptive Systems” helps fully demonstrate the 
possibilities of using evolutionary algorithms for problem solving (De Jong 1975).  In 
1989, the field of evolutionary algorithms received a fresh injection of enthusiasm with 
the publication of David Goldberg’s work entitled “Genetic Algorithms in Search, 
Optimization, and Machine Learning” (Goldberg 1989).  The momentum of development 
continued with Melanie Mitchell’s 1996 work entitled “An Introduction to Genetic 
Algorithms,” which helped to further solidify the theoretical foundations of EA’s 
(Mitchell 1996).  Ever since then, the field has continued to grown and the practical 
applications of EA’s are abounding with success stories (Haupt 1998; Chambers 2000; 
Coley 2001). 

With the explosive growth of the EA field, there has also been an expansion in the variety 
of EA types.  Some of these variations include Genetic Algorithms (GA’s), Evolutionary 
Strategy (ES), Genetic Programming (GP), and Learning Classifier Systems (LCS).  In 
addition to these, a new variety is beginning to emerge known as Quantum-Inspired EA 
(QEA) (Han 2003).  The primary distinction between each of these is the representation 
used for the population of individuals.  For example, GA’s are traditionally associated 
with using a binary number representation, while GP’s use a tree structure to represent 
individuals.  In some cases, such as LCS, a distinction is also made in the form of the 
fitness function used to evaluate the individual.  These different forms of EA’s are 
necessary to solve different types of problems depending on the domain.  Despite these 
differences, the fundamental philosophy behind each is the same:  natural selection and 
survival of the fittest. 

In brief, an EA is a search algorithm, but with key features that distinguish it from other 
search methods including: 

• A population of individuals where each individual represents a potential solution 
to the problem to be solved  

• A fitness function that evaluates the utility of each individual as a solution  

• A selection function that selects individuals for reproduction based on their 
fitness. 

• Idealized genetic operators that alter selected individuals to create new individuals 
for further testing.  These operators, e.g. crossover and mutation, attempt to 
explore the search space without completely losing information (partial solutions) 
that is already found. 

Figure 1 illustrates the basic steps of an EA.  The population may be initialized either 
randomly or with user-defined individuals.  The EA then iterates through an 
evaluate-select-reproduce cycle until either a user-defined stopping condition is satisfied 
or the maximum number of allowed generations is exceeded. 



procedure EA 
{ 

initialize population; 
while termination condition not satisfied do 
{ 

  evaluate current population; 
  select parents; 
  apply genetic operators to parents to create offspring; 
  set current population equal to be the new offspring 
population; 

} 

 
Figure 1.  Basic steps of a typical evolutionary algorithm 

The use of a population allows the EA to perform parallel searches into multiple regions 
of the solution space.  Operators such as crossover allow the EA to combine discovered 
partial solutions into more complete solutions.  As a result, the EA searches for small 
building blocks in parallel, then iteratively recombine small building blocks to form 
larger and larger building blocks.  In the process, the EA attempts to maintain a balance 
between explorations for new information and exploitation of existing information.  Over 
time, the EA is able to evolve populations containing more fit individuals or better 
solutions.  For more information about EAs, the reader is referred to (Mitchell 1996; 
Coley 2001). 

Swarm Intelligence 

More than 50 years ago, biologists have reported that a different kind of intelligence form 
could emerge from some social insects, fish, birds, and mammals (Bonabeau, Henaux et 
al. 1998; Bonabeau, Dorigo et al. 1999). Inside an anthill, a termite swarm, a bee colony, 
a bird flock, a fish school, each individual does not have the requisite neuronal capacity. 
However, the mere interaction among a great number of individually simple creatures can 
lead to the emergence of intelligence, which is reactive and adaptable to the environment 
(Bonabeau, Dorigo et al. 1999). In insect societies, the whole system is organized in a 
decentralized model. A large amount of autonomous units with a relatively simple and 
probabilistic behavior is distributed in the environment. Each unit is provided only with 
local information. Units do not have any representation or explicit knowledge of the 
global structure they are supposed to produce or in which they evolve. They have no plan 
at all. In other words, the global "task" is not explicitly programmed within individuals, 
but emerges after the succession of a high number of elementary interactions between 
individuals, or between individual and environment.  This type of collective intelligence 
model built from multiple simple individual entities inspired a new discipline in computer 
science: Swarm Intelligence. 

Swarm Intelligence is an artificial intelligence technique involving studies of collective 
behaviors in decentralized systems.  It is the modeling and application of group 
interactions found in social insects(Dorigo, Bonabeau et al. 2000). Beni and Wang (Wang 
and Beni 1988; Wang and Beni 1989; Wang and Beni 1990) first introduced the term of 
Swarm Intelligence in the context of cellular robotic systems.  In their experiments, many 
agents occupy one or two-dimensional environments to generate patterns and to self-
organize through interaction with the nearest neighbor.  Bonabeau (Bonabeau, Henaux et 
al. 1998; Bonabeau, Dorigo et al. 1999) extended the concept of swarm intelligence to 



any work involved with algorithm design or distributed problem-solving devices. He 
gave a definition of Swarm Intelligence as “any attempt to design algorithms or 
distributed problem-solving devices inspired by the collective behavior of social insect 
colonies and other animal societies”.  This last definition is wider and more up-to-date 
than the original one that only referred to the cellular robotics framework. 

Currently, popular research directions in Swarm Intelligence are grounded on following 
four research areas: Flocking (Reynolds 1987), Swarm Robotics (Wang and Beni 
1988)(Wang and Beni 1990), Ant Colony Optimization (ACO) (Bonabeau, Dorigo et al. 
1999) and Particle Swarm Optimization (PSO) (Eberhart and Kennedy 1995).  

Flocking 

Flocking model was first proposed by Craig Reynolds(Reynolds 1987). It is a bio-
inspired computational model for simulating the animation of a flock of entities called 
“boid”.  It represents group movement as seen in bird flocks and schools of fish in nature.  
In this model, each boid makes its own decisions on its movement according to a small 
number of simple rules that react to the neighboring mates in the flock and the 
environment it can sense.  The simple local rules of each boid generate complex global 
behaviors of the entire flock.  

The Flocking model consists of three simple steering rules that need to be executed at 
each instance over time.  Three basic rules include: (1) Separation: Steering to avoid 
collision with other boids nearby.  (2) Alignment: Steering toward the average heading 
and match the velocity of the neighbor flock mates.  (3) Cohesion: Steering to the average 
position of the neighbor flock mates.  The three basic rules are sufficient to reproduce the 
moving behaviors of a single species bird flock on the computer.  However, experiments 
indicate these three rules will eventually result in all boids in the simulation forming a 
single flock.  It cannot reproduce the real phenomena in the nature: the birds or other herd 
animals not only keep themselves within a flock that is composed of the same species or 
the same colony creatures, but also keep two or multiple different species or colony 
flocks separated.  

Ant Colony Optimization 

The Ant Colony Optimization is a heuristic algorithm that is inspired from the food 
foraging behavior of ants.  Ant colonies would be able to accomplish tasks that would be 
impossible to be accomplished by a single individual ant.  One type of tasks is seeking 
the shortest path from their nest to the food source.  As ants forage they deposit a trail of 
slowly evaporating pheromone.  Ants then use the pheromone as a guide for them to find 
the between the nest and the food source if they find one.  All foraging ants use the 
pheromone as a guide regardless of whether the pheromone is deposited by itself or other 
ants.  Pheromones accumulate when multiple ants travel through same path.  The 
pheromones on the tail evaporate as well.  Those ants that reach the food first return 
before the others.  Their return trail’s pheromone is now stronger than the other ant trails 
that have not found food or have longer distances from the food source to nest because 
the return trail has been traveled twice.  This high pheromone volume trail attracts other 
ants following the trail.  The pheromone content on this trail become stronger as the trail 
is increasing traveled and other trail’s pheromone content will become weaker because 
fewer ants travel those trails and pheromone evaporates.  Eventually, the trail with 



highest content of pheromone and traveled by most of foraging ants will be shortest tail 
between food sources to nest. 

Marco Dorigo introduced the first ACO system in his Ph.D. thesis (Dorigo 1992).  The 
idea of the ACO algorithm is to mimic the ant’s foraging behavior with “simulated ants” 
walking around the graph searching for the optimal solution.  In the ACO algorithm, each 
path followed by a "simulated ant" represents a candidate solution for a given problem.  
The simulated ant “deposits” pheromone on the path and the volume of the pheromone is 
proportional to the quality of the corresponding candidate solution for the target problem.  
The searching ants choose the path(s) with the higher volume of pheromone with greater 
probability than the path(s) with low pheromone volume.  Eventually, the searching ants 
will converge on the path that represent the optimum or near optimum solution for the 
target problem.   

Particle Swarm Optimization 

Particle Swarm Optimization is a population based stochastic optimization technique that 
can be used to find an optimal, or near optimal, solution to a numerical and qualitative 
problem.  PSO was originally developed by Eberhart and Kennedy in 1995 (Eberhart and 
Kennedy 1995), inspired by the social behavior of flocking birds or a school of fish.   

In the PSO algorithm, birds in a flock are symbolically represented as particles.  These 
particles can be considered as simple agents “flying” through a problem space.  A 
problem space in PSO may have as many dimensions as needed to model the problem 
space.  A particle’s location in the multi-dimensional problem space represents one 
solution for the problem.  When a particle moves to a new location, a different solution is 
generated.  This solution is evaluated by a fitness function that provides a quantitative 
value of the solution’s utility. 

The velocity and direction of each particle moving along each dimension of the problem 
space are altered at each generation of movement.  It is the particle’s personal experience 
combined with its neighbors’ experience that influences the movement of each particle 
through a problem space.  For every generation, the particle’s new location is computed 
by adding the particle’s current velocity V-vector to its location X-vector.  
Mathematically, given a multi-dimensional problem space, the ith particle changes its 
velocity and location according to the following equations (Clerc 1999; Clerc and 
Kennedy 2002):  
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Equation 2 

where, pid is the location of the particle where it experiences the best fitness value; pgd is 
the location of the particle experienced the highest best fitness value in the whole 
population; xid is the particle current location; c1 and c2 are two positive acceleration 
constants; d is the number of dimensions of the problem space; rand1, rand2 are random 
values in the range of (0,1).  w is called the constriction coefficient (Clerc and Kennedy 
2002) and it is computed according to Equation 3: 
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PSO versus Evolutionary Computing 

PSO shares many similarities with evolutionary computational techniques.  Both systems 
are initialized with a collection of random solutions for searching the optima in a problem 
space by updating generations.  However, unlike most other population-based 
evolutionary algorithms, PSO is motivated by cooperative social behavior instead of 
survival of the fittest.  In evolutionary computation, the solution change is driven by the 
genetic recombination and mutations.  In the case of PSO, it is by learning from peers.  
Each particle in PSO has memory to track the best solution it has experienced, as well as 
that of its neighbors.  This history of the best solutions plays an important role in 
generating a new position, that is, a potential problem solution. 

Applications of EA and SI 

To illustrate the value of EA and SI techniques for revealing data patterns, this section 
discusses two different methods for analyzing data.  For each of these methods, the focus 
area is that of text analysis.  However, their applicability is not limited to this domain. 

In text analysis, there is a variety of challenges.  For illustration purposes, the primary 
challenge is that a massive data set in the form of unstructured text within individual 
documents must be analyzed.  For example, a data set may consist of 1,000 documents 
(of various lengths), and a human must analyze and understand the data that is contained 
within these 1,000 documents.  To make matters more complicated, this document set 
may even be streaming, so that 1,000 documents may arrive every 1 hour from various 
sources.  To address this daunting challenge, this section will illustrate the application of 
EA and SI for pattern analysis. 

Adaptive Sampling using an Evolutionary Algorithm 

To characterize effectively a large and streaming set of news articles, the following goals 
are proposed in order to create an algorithm that provides a useful result to a human 
analyst, it must: 

1. Be capable of sufficiently reducing the data to manageable levels 

2. Be able to provide a fast and accurate processing of massive amounts of data 

3. Efficiently and effectively deal with duplicate data 

4. Be able to work with streaming data 

5. Not require prior knowledge concerning the data set 

To address the five goals identified, an evolutionary algorithm will be discussed that 
performs an adaptive, maximum variation sampling (MVS) technique.  It is well known 
that an evolutionary algorithm performs very well for large search spaces and is easily 



scalable to the size of the data set.  In addition, EA’s are also particularly suited for 
parallelization (Tanese 1989; Muehlenbein 1989; Mutalik 1992).  To understand better 
the need for scalability and the size of the search space in this problem domain, consider 
a document set with only 10,000 news articles in it.  Now, suppose an analyst needs to 
reduce this data set to 200 representative articles (only 2% of the entire data set).  In that 
case, there are approximately 1.7 x 10424 different combinations of documents that could 
be used to create a single sample.  Clearly, a brute force approach is unacceptable.  In 
addition, many of the combinations would consist of duplicate data, which would lower 
the quality of the result for the analysts.  Ultimately, an intelligent and scalable approach 
such as a evolutionary algorithm is needed to help address goals 1 and 2.  As 
demonstrated by (Mutalik 1992), a parallel genetic algorithm is well suited to a 
combinatorial optimization problem. 

The remainder of the goals is addressed via the MVS technique.  Since this technique is 
searching for data points that maximize diversity, this approach will avoid duplicate data 
from being included in the results.  In addition, it does not require that all duplicate data 
be first identified.  This is a tremendous advantage since duplicate data can often be a 
significant portion of the data set.  Furthermore, the MVS technique does not require the 
data set to remain static, but a dynamic set is easily handled.  Finally, the MVS technique 
is a sampling technique and therefore does not require prior knowledge of the data set, 
and will naturally reduce the data set to the appropriate size as determined by the 
analysts. 

Two of the most critical components of implementing a GA are the encoding of the 
problem domain into the GA population and the fitness function to be used for evaluating 
individuals in the population.  To encode the data for this particular problem domain, 
each individual in the population represents one sample of size N.  Each individual 
consists of N genes where each gene represents one document (each document is given a 
unique numeric identifier) in the sample.  For example, if the sample size were 15, each 
individual would represent one possible sample and consist of 15 genes that represent 15 
different documents.  This representation is shown in Figure 2. 

Document 1 Document 2 Document N …
Gene 1 Gene 2 Gene N …

Sample Size is N 

 
Figure 2.  Genetic representation of each individual 

The fitness function evaluates each individual according to some predefined set of 
constraints or goals.  In this particular application, the goal was to achieve an ideal 
sample that represents the maximum variation of the data set without applying clustering 
techniques or without prior knowledge of what the categories of the population are.  To 
measure the variation (or diversity) of our samples, the summation of the similarity 
between the vector space models of each document (or gene) in the sample is calculated 
as shown in Equation 5. 
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Equation 5.  Fitness function 



In Equation 5, the Similarity function calculates the distance between the vector space 
models of gene j and k of the individual i.  This distance value ranges between 0 and 1 
with 1 meaning that the two documents are identical and 0 meaning they are completely 
different in terms of the words used in that document.  Therefore, in order to find a 
sample with the maximum variation, Equation 5 must be minimized.  In this fitness 
function, there will be (N2 – N) / 2 comparisons for each sample to be evaluated. 

The defined fitness function can be computationally intensive for large sample sizes or 
for data sets with lengthy news articles.  To compensate for this, the GA developed for 
this work was designed as a global population parallel GA.  For this particular work, the 
selection process used an “above average” measure for the selection.  For each 
generation, an average fitness value is calculated for the population.  Individuals with 
fitness values that are above this average are selected as parents, while the other 
individuals are discarded.  The crossover and mutation operators are 1-point operators.  
The crossover rate was set to 0.6.  The mutation rate was set to 0.01. 

The data set used for the tests described previously was the Reuters-21578 Distribution 
1.0 document collection (Lewis 1997).  This corpus consists of 21,578 Reuters news 
articles from 1987, and was specifically developed for categorization research purposes.  
As a result, this corpus includes additional information concerning the documents in the 
set.  This corpus was chosen due to its availability, its size and for the additional 
information (e.g., category information) for each document, which will be used for future 
comparisons and research.  To evaluate the performance of this implementation, several 
tests were conducted, and are briefly summarized in the following table. 

 
Table 1.  List of tests performed 

Test 
Num. 

Corpus 
Size 

Sample 
Size 

Known 
Duplicates 

1-3 1,000 15 No 

4-6 9,494 135 No 

7-9 21,578 200 No 

10-12 1,000 15 Yes 

13-15 9,494 135 Yes 

 

For each test, ten runs were performed with a population size of 100 and 100 generations.  
However, on test 7 – 9, only 3 runs of 400 generations each with a population size of 100 
were performed due to time constraints.  After conducting the defined test and analyzing 
the results, several interesting observations are evident.  The hypothesis that the MVS-
GA would be “immune” to duplicate data or take advantage of it did appear to hold true. 
There is a very slight decrease in fitness values as duplicates are added.  While this is not 
as big of a decrease as was expected, it still supports the hypothesis that the MVS-GA is 
not dramatically affected by duplicate data.  In addition, this approach successfully 
reduces massive data amounts to manageable levels.  Finally, while the results 
demonstrated several significant relationships and behaviors, future work will be needed 
to further understand these relationships and to develop improved parameter control 
functions. 



Distributed Flocking Algorithm for Information Stream Clustering Analysis 

Document clustering analysis plays an important role in improving the accuracy of 
information retrieval.  In this section, a novel Flocking based algorithm for document 
clustering analysis is presented.  This approach uses stochastic and heuristic principles 
discovered from observing bird flocks or fish schools.  Unlike other partition-clustering 
algorithm such as K-means, the Flocking based algorithm does not require initial 
partition seeds.  The algorithm generates a clustering of a given set of data through the 
embedding of the high-dimensional data items on a two-dimensional grid for easy 
clustering result retrieval and visualization.  Inspired by the self-organized behavior of 
bird flocks, each document object is represented as a flock boid (i.e., bird).  The simple 
local rules followed by each flock boid results in the entire document flock generating 
complex global behaviors, which eventually result in a clustering of the documents.  The 
efficiency of the algorithm is evaluated with both a synthetic dataset and a real document 
collection that includes 100 news articles collected from the Internet.  Results show that 
the Flocking-clustering algorithm achieves better performance compared to the K-means 
and the Ant clustering algorithm for real document clustering. 

In (Cui, Gao et al. 2006), a new Multiple Species Flocking (MSF) model is proposed to 
model the multiple species bird flock behaviors.  In the MSF model, in addition to the 
three basic action rules in the Flocking model, a fourth rule, “feature similarity rule”, is 
added into the basic action rules of each boid to influence the motion of the boids.  Based 
on this rule, the flock boid tries to stay close to other boids that have similar features and 
stay away from other boids that have dissimilar features.  The strength of the attracting 
force for similar boids and repulsion force for dissimilar boids is inversely proportional to 
the distance between the boids and the similarity value between the boids’ features. 

One application of the MSF model is document clustering (Cui and Potok 2006).  
Inspired by the bird’s ability of maintaining a flock as well as separating different species 
or colony flocks, the MSF clustering algorithm uses a simple and heuristic way to cluster 
document datasets.  In the MSF clustering algorithm, each document is projected as a 
boid in a 2D virtual space.  The document is represented as the feature of the boid.  The 
boids that share similar document features (same as the bird’s species and colony in 
nature) will automatically group together and became a boid flock.  Other boids that have 
different document features will stay away from this flock.  After several iterations, the 
simple local rules followed by each boid results in generating complex global behaviors 
of the entire document flock, and eventually a document clustering result is emerged. 

One synthetic dataset and one real document collection dataset were used for evaluating 
the performance of the clustering algorithms.  The synthetic dataset consists of four data 
types, each including 200 two dimensional (x, y) data objects.  x and y are distributed 
according to Normal distribution.  This is the same dataset that has been used by Lumer 
and Faieta for their Ant clustering algorithm(Lumer and Faieta 1994).  There are many 
references in the document clustering literature (Handl and Meyer 2002; Ramos and 
Merelo 2002) to the use of this synthetic dataset as a performance evaluation benchmark.  
In the real document collection dataset, a document collection that contains 100 news 
articles was used.  These articles are collected from the Internet at different time stages 
and have been categorized by human experts and manually clustered into 12 categories.  
A description of the test dataset is given in Table 2. 



Table 2.  The document collection dataset 

 Category/Topic Number of articles 

1 Airline Safety 10 

2 Amphetamine 10 

3 China and Spy Plane and Captives 4 

4 Hoof and Mouth Disease 9 

5 Hurricane Katrina 5 

6 Iran Nuclear 8 

7 Korea and Nuclear Capability 10 

8 Mortgage Rates 10 

9 Ocean and Pollution 6 

10 Saddam Hussein and WMD 8 

11 Storm Irene 10 

12 Volcano 10 

 

In order to reduce the impact of the length variations of different documents, each 
document vector is normalized so that it is of unit length.  Each term represent one 
dimension in the document vector space.  The total number of terms in the 100 stripped 
test documents is 4,790, which means the document collection has 4,790 dimensions.  

The different clustering methods were evaluated over data sets representing distinct 
clustering difficulties in the same experimental conditions in order to appreciate better the 
performance of each clustering algorithm.  The number of iterations in each algorithm 
was fixed at 300 iterations.  First, the K-Means, Ant clustering and Flocking clustering 
were evaluated over the synthetic dataset.  Second, the algorithms were tested over the 
real document datasets.  For each dataset, each algorithm was run 20 times and the mean 
number of clusters found (since the K-Means algorithm uses the prior knowledge of the 
cluster number of the data collection, the clustering number it produces is exactly equal 
to the real class number) and the F-measure of the clustering results.  Table 3 shows the 
results obtained from both the synthetic and the real datasets.  The three clustering 
algorithms all work well in the synthetic dataset.  When these three algorithms are 
applied to the 100 news article dataset, according to the results shown in Table 3, it was 
determined that 300 iterations was not enough for the Ant clustering algorithm to 
generate an acceptable clustering result.  However, 300 iterations are sufficient for the 
Flocking-clustering algorithm to generate good clustering results from the document 
dataset. 

Results show that the K-means algorithm implementation needs much less computing 
time and iterations to reach a stable clustering result than the other two algorithms.  
However, the drawback of the K-means clustering algorithm is that the average F-
measure value of the clustering results are lower than Flocking algorithm.  The K-means 
algorithm also requires the probable number of clusters of a dataset before clustering it.  
For the Flocking clustering implementation and the Ant clustering implementation, the 



major computing time cost is the document similarity and dissimilarity calculations.  Our 
experiment results show that it takes both implementations nearly same computing time 
to finish the initial 20-30 iterations.  However, after that, the flocking implementation’s 
computing time of each iteration quickly increases.  The reason for this is that, in the 
Flocking implementation, the clustering result is generated very quickly and the boids 
with similar features quickly converge together, therefore, boids need to calculate the 
similarity values with multiple neighboring flock mates during the cluster refining stage.  
For the Ant clustering algorithm implementation, our experiments show that even after 
thousands of iterations, the implementation still cannot generate an acceptable visual 
clustering result.  The fact that, after several thousands of iterations, the computing time 
of each iteration is still low may indicate most document objects are still randomly 
distributed in the grid space. 
Table 3.  The results of K-means, Ant clustering and Flocking clustering Algorithm on synthetic and 

real datasets after 300 iterations 

 Algorithms Average 
cluster number 

Average F-
measure value 

Flocking 4 0.9997 

K-means (4) 0.9879 Synthetic 
Dataset 

Ant 4 0.9823 

Flocking 10.083 0.8058 

K-means (12) 0.6684 Real Document 
Collection 

Ant 1 0.1623 

 

In this new Flocking based document-clustering algorithm, each document in the dataset 
is represented by a boid.  Each boid follows four simple local rules: the alignment rule, 
the separation rule, the cohesion rule, and the feature similarity / dissimilarity rule, to 
move in the virtual space.  Boids following these simple local rules form complex and 
emergent global behaviors for the entire flock, and eventually these boids representing 
documents form a flock or cluster.  Different flocks represent different document clusters.  
Similar to another bio-inspired clustering algorithm, the Ant clustering algorithm, the 
Flocking algorithm does not need initial partitions or the prior knowledge about the class 
number for each dataset.  The advantage of the Flocking-clustering algorithm is the 
heuristic principle of the flock’s searching mechanism.  This heuristic searching 
mechanism helps boids quickly form a flock.  Results from experiments evaluating these 
three different clustering algorithms illustrate that the Flocking-clustering algorithm can 
generate a better clustering result with fewer iterations than that of the Ant clustering 
algorithm.  The clustering results generated by the Flocking algorithm can be easily 
visualized and recognized by an untrained human user.  Since the boid in the algorithm 
continues flying in the virtual space and joining the flock it belongs to, new results can be 
quickly re-generated when adding or deleting document boids at run time.  This feature 
allows the Flocking algorithm to be applied in clustering and analyzing dynamically 
changing information stream and real time visualizing of results for a human. 

 

 



Future Trends & Conclusions 

As discussed in the previous sections, the area of Evolutionary Computing is rich in 
application, and has very rapidly become a new paradigm for computing.  However, the 
potential for such computing has not been completely harnessed.  Several areas are now 
emerging that will extend the power of Evolutionary Computing even further.  Much of 
the driving force behind these areas stems from the challenge of dynamic and multi-
objective optimization problems.  Consequently, the future trends of EC will involve 
hybrid approaches that leverage the strengths of each technique to create a new technique 
that will be more robust to changing problem spaces.  For example, SI techniques that 
can learn and adapt via the use of EA techniques, or EA techniques that utilize SI 
techniques for evaluating potential solutions.  In addition, creative evolutionary 
techniques will be explored that will help expand the capability of current EC technique 
to create new hypothetical solutions that even the EC designers would not have imagined.  
These future capabilities will only strengthen the value of EC for data pattern analysis. 
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