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Abstract

In this paper, we provide a biasing expansion
swarm approach (BESA) for using multiple simple
mobile agents, with limited sensing and
communication capabilities, to collaboratively search
and locate an indeterminate number of emission
sources in an unknown large-scale area. The key
concept in this approach is swarm behavior. By
applying the three properties of the swarm behavior: 
separation, cohesion and alignment, our approach 
can ensure the agent group attains dynamically stable
ad-hoc connectivity and fast target convergence.
Using a grid map to represent the unknown
environment, an ad-hoc network for
communication and our biasing expansion algorithm 
for path planning, each agent simultaneously 
considers all concentration values collected by other
swarm members and determines the positive gradient
direction of the whole coverage area of the swarm. 
This will make the swarm immune to the random
sensor errors, local aerosol accumulations and other 
local interference effects during their search. We 
present a simulated environment that has multiple
emission sources and complex aerosol accumulation
and distribution. Based on the simulation, our
approach can achieve better performance than the 
gradient descent approach, which currently appears
to be the most popular algorithm for emission source
localization.

1. Introduction

When emission sources such as hazardous gas
containers are accidentally or intentionally released in
an open area, the material inside the container will
mix with air to become an aerosol and be into
the surrounding area with the flow of air. The
traditional source localization approach uses 
continued sampling and careful search of the entire 

suspected area by a specially trained human to locate
the aerosol emission sources. But such approach is not 
efficient in terms of time requirements, not to mention
the risk to the human operators. In recent years, many
research groups have investigated sending robots to
the suspected area to locate emission sources. Most 
research seems to focus on techniques for locating the 
sources by using a single robot However,
because of the spatial limitation of a single robot, few 
robotic systems have been developed that demonstrate
the capability to carry out the source localization task 
in a large-scale area with multiple emission sources 
and complex environment status 

In this paper, we provide a biasing expansion 
swarm approach (BESA) to allow multiple simple 
mobile agents with limited-range communication to
collaboratively search a large-scale environment and 
efficiently identify the emission The agent
control algorithm in this approach is based on swarm
behavior [11,151, a computational metaphor inspired 
by social insects. This paradigm, which has been
demonstrated by flocks of birds, is an ideal model for
solving problems in distributed manner. 

2. Related work

2.1. Hazardous aerosol detection 

Research into hazardous aerosol detection is
focused in two primary areas. One research concept 
focuses on establishing the accurate boundary or
perimeter of a dynamically changing hazardous
material contaminated area for preventing human 
exposure or enabling evacuation the dangerous
area. Hardin et al. [8] proposed a modified particle
swarm algorithm for robotic mapping of an area
contaminated by hazardous materials. Flanigan [6]
proposed using passive infrared to remotely detect 
hazardous vapors and map the contaminated area. 

Another research area is odor source localization. 
The research focuses on the use of mobile agents to 
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detect, track and seek the odor source. Previous
approaches include spiral surge gradient-seek
and mobile sensor array These sets of techniques
are all based upon gradient-seeking approaches. They
use the natural phenomena of
Gases and aerosols tend to disperse into the 
environment inducing a concentration gradient that 
can be used as a clue for tracing emission sources. A
mobile agent’s movement is dependent upon the
spatial changes in aerosol concentration as sensed by
the agent. An increase in the concentration along the 
agent’s path is called a positive gradient while a 
decrease is called a negative gradient. The agent will
always try to move in a direction that will generate a 
positive gradient. The goal is for the agent to track the 
gradient back to the source.

With today’s advanced technology, different kinds
of mobile systems equipped with electrical 
gadaerosol-sensors have been investigated to locate
hazardous material emission sources in a suspected
area However, the electronic 

sensors in those mobile systems can only
provide concentration information about a
very small area [7] and each agent can only collect
local environment information around it. Further, the 
sensors usually cannot provide an instantaneous and
precise measurement of the concentration.
An individual agent using the concentration gradient 
seeking approach is easily trapped in a local aerosol 
concentration if the concentration area is larger than 
the individual agent’s sensor range.

2.2. Swarm Robotics 

A swarm is a distributed system with a large
number of agents Traditionally, there is a belief
that group behavior in a multiple-robot system needs
to be centralized, with global planning and decision.

In the mid Grey Walter, Wiener and
Shannon did some research on turtle-like robot group.
Each robot in the group was equipped with light and
touch sensors. The robots followed very simple rules to
generate their actions. When placed together, these
robots represented complex social behaviors in
response to each other’s movements Early swarm
researchers [ suggest some complex social or 
intelligent behaviors of the whole robot group can be 
achieved through the interaction within the very 
simple group members. From this idea comes the
concept of swarm intelligence. Swarm intelligence can 
be defined as the collective intelligence that emerges 
from a group of simple agents Swarm robotics is

currently one of the most important application areas
for swarm intelligence. Many different swarm control 
models have been proposed. Beni introduced the
cellular robotics system, which consists of a collection
of autonomous robots cooperating under distributed
control. Each robot can have limited communication
with its neighbor robots to accomplish predefined 
global tasks. However, each robot in the system must 
have pre-programmed cooperative and reasoning
ability to reach the goal. Currently, more researchers
are focusing on problem solving approaches that use a
collection of idealized agents. Each agent even does
not have intention of “cooperation” and “problem
solving”. In other words, the individual agents do not

they are solving a problem, but the collective
behavior of the group can solve the problem. One
example is Reynold’s boid project [

Reynold built a computer simulation to model the
motion of a flock of birds. Reynold believes the motion
of the bird flock, as a whole, is the result of the actions
of each individual member that follow some simple 
rules. In the simulation, he referred to a bird as
“boid”. Each boid is implemented as an independent
agent that flies in the simulated environment. There is
no central control in the bird flock. Each boid
navigates only according to its own perception of the
environment. Three rule sets control agent behavior:
separation, alignment and cohesion. Separation helps 
boids avoid collisions with each other. The alignment
rule attempts to match velocity with nearby flock 
mates. The cohesion rule attempts to stay close to
nearby flock mates. By following these three simple 
rules, the boids in the simulation can quickly form a
stable swarm formation (whether flying, floating, 
rolling, etc.) where every boid is at least some 
minimum distance from every other boid and not any
further than some maximum distance. 

In our approach, we combined Beni’s limited 
communication concept and simple rules control
concept of Reynold’s boid. The three basic control 
rules: separation, cohesion and alignment are used to
govern the swarm member’s movement to ensure
individuals remain in a specific orientation and
distance as well as maintaining connectivity between
members of the agent swarm. All agents in the swarm
can only directly communicate with its nearby agents 
and must maintain an ad-hoc network to exchange
information with other agents in the swarm. By
gathering the data from other agents, an agent can
detect the remote environment‘s aerosol concentration 
that it cannot directly detect. That gives each agent a
virtual sensor range wider than its real sensor range
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and allows them to easily escape from the local aerosol 
concentration location. 

3. The Algorithm Description 

3.1. Assumptions

In our swarm approach, we envision that an
unknown number of hazardous gas containers are
simultaneously vented to the atmosphere in a
scale area. Wind disperses the hazardous aerosol over 
the area and forms aerosol plumes. In a global context, 
the concentration value of plumes surrounding the 
emission sources has gradient characteristics such that
concentrations are reduced as distance from the

increases. However, the turbulent nature of
airflow typically breaks the plumes into isolated
pockets and mixes them into a local chaos status.

A swarm of identical agents is deployed into this 
suspected area to search for the Each mobile
agent is equipped with appropriate electronic 

sensors. A sensor’s response and recovery
time at each measurement iteration is counted as the 
mobile agent’s stop time for each cell. We assume the
sensor cannot always read the correct environment
aerosol concentration value and sensor errors are
considered as a kind of random noise. Each agent is 
only equipped with a local wireless communicator
such as WLAN [16,191. Compared to the scale of the
potential search area, the local communication range 
is very small. No agent has global communication
capability. However, each agent has the ability to
forward data packets for each other over possible 
multi-hop paths to allow communication between 
agents otherwise out of direct wireless communication
range. This facilitates creation of an ad-hoc wireless
network for global communication capability in the
swarm. Due to agent mobility, the ad-hoc network 
topology may change rapidly over time. A table-driven
routing protocol is used in the network for
routing all messages.

3.2. Representation of the environment by
occupancy grid map 

Each agent in the system maintains an occupancy
grid map (Fig. 1) to represent the 
environment. Each cell in the grid map is a square 
block with a unique identity number. We assume each
agent’s communication range can only cover cells 
adjacent to an agent’s current location. The time cost
for an agent to move from one cell to its nearby cell is

fixed. However, the time to measure the concentration
value of each cell is variable. It varies in different cells 
and is unknown to the agent before agent moving into
the cell. Upon initialization, the agents have no prior
knowledge of the environment, each cell is labeled as
un-explored and the concentration value is unknown.

3.3 Maintaining the ad communication
network during exploring 

At the initial time, all agents are deployed near
each other and an ad-hoc wireless network is 
established connecting all agents. Via the ad
network, each agent can collect the aerosol
concentration value and other information from the
other agents. After an agent completes the
measurement of the aerosol concentration of its 
current cell, a swarm behavior controller implemented 
on each agent will be used for planning the next target 
cell.

..

Figure IEnvironment grid map and 
expansion cells 

To ensure wide coverage without overlapping or
interference between agents, the separation property of
the swarm behavior specifies that each agent should
avoid exploration of a cell occupied by another agent. 
Although all unexplored and unoccupied cells in the
grid map can be chosen as the agent’s next target cell,
moving to a cell without another agent in an adjacent
cell could result in lost network communications. To
maintain connectivity of the ad network, the
cohesion property of the swarm behavior uses the
gradual expansion algorithm [5] to control each 
agent’s movement. Each agent can only navigate to
the “expansion cells” in the grid map. According to

an agent’s “expansion cell” is defined as the cell
in the grid map that is unexplored and unoccupied. In 
the grid map, each expansion cell has at least one
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agent located in one of its eight adjacent cells. This
keeps the agent in contact with the ad network. To
steer an agent towards the emission source, a unique
agent movement direction must be generated.

3.4 Environment grid map and expansion cells 

As indicated in the previous section, the aerosol
diffusion in the contaminated area will induce a 
gradient phenomenon. A high concentration indicates 
a location near the source. However, the combined
impact of multiple sources will weaken the gradient 
phenomena. At the same time, unstable wind flow 
may disturb this distribution and generate some local 
maxima in aerosol concentration. To eliminate those 
local mutations and keep the whole agent swarm
following the right gradient direction toward the
source, we developed a bias expansion algorithm. This
algorithm will assist agents to select the most suitable 
target cell from the swarm’s expansion cell list. In the
algorithm, a new notion: the biasing parameter is 
introduced. Each expansion cell’s biasing parameter, 
B, can be given by following equation:

In equation n is the total number of agents
that share their sensor reading with the swarm. is
the aerosol concentration of the cell where agent i is 
located. K is constant and is the distance between
the expansion cell and the cell that agenti locates.

At each iteration, when an agent finishes its
current cell measurement, it will plan its next target 
cell. Through the ad-hoc network of the swarm, the
agent can discern all available expansion cells around
the swarm. By moving to any of those expansion cells,
the agent can avoid a cell occupied by another agent as
well as maintain network connectivity with other 
agents in the swarm. To ensure quick convergence on 
the emission sources, the agent uses equation to
evaluate the suitability of all candidate expansion
cells. All agents’ sensor values and their distance to
the expansion cell influence the expansion cell’s
biasing parameter value. The expansion cell that has 
highest biasing parameter value will be selected as the
agent’s next target cell. Since each agent in the swarm
should occupy a different cell in the environment grid 
map, the swarm’s sensors coverage area is the
summation of all individual agent sensor coverage. 
That enables agents in the swarm to avoid being
trapped by a local maximum concentration. 

4. Simulation Experiments 

A simulation was developed to evaluate our 
approach. The simulation describes the suspect area as
a two-dimensional grid of size 100x100. We
initialized two sources and of aerosol at
randomly selected positions in the grid. The
concentration of the aerosol at each grid cell depends
on the distance from the aerosol source point. The
farther away from the sources, the lower the
concentration of the aerosol. This is the required 
working environment for most schemes utilizing the 
gradient-seek approach. To simplify our simulation,
we used following mathematical model generate the 
concentration of each cell in the grid. 

Equation (2) gives the concentration that can
be sensed at a point on the grid in the presence of 

sources. and is the aerosol release speed of the
source and K is a constant. is the distance 
between the grid point and the source is
the environmental and sensor detection error impact
on the point To simulate the influence of the
random aerosol sensor detection error, we randomly
chose 1% cells from the grid map and changed their
concentration values as random numbers. In addition,
40 randomly located apexes (local maximum 
concentration converge spots) are generated on the
grid map to simulate the local aerosol accumulation.
The possible aerosol distribution grid map is shown in
Figure 3. The grey level of each cell represents the
aerosol concentration value of the cell. 

This simulation has mobile agents deployed
in the simulated environment. Each agent can be
randomly deployed in the grid or deployed based on
the requirements of different approaches. The travel
time for an agent to move from one cell to its neighbor
cell equals simulation time-step. The time that an
agent requires for measuring the concentration value 
in its cell plus the sensor recovering time is the total
stop time of an agent in a cell. This stop time is a 
random number that ranges from 1 to 4 time-steps,
and this number is unknown to the agent before
moving into a cell. The source is considered to be
located only when an agent of the swarm moves into
the cell where the source located. In our trials, we
assume that the swarm’s mission is completed when 
the are localized. Following the localization,
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we assume that a different type of agent would be
deployed to mitigate the hazard.

Figure 2 Aerosol concentration distributions. 
(a) Ideal case without any environment 
impact. (b) random sensor detection 

errors and 40 random size localized aerosol 
accumulations

5. Results overview

Two performance indicators are used for
evaluating the performance of the approach: 1. The
length of simulation time-steps for the robots to locate 
the emission sources. 2. The distance between the
source and the mobile agent nearest to the source at
each time step. For performance evaluation, we
implemented a gradient seeking based approach in the
same simulation environments and compared its 
performance result with BESA approach. In each
simulation, we calculated the number of time steps to
find the source as compared to the gradient seeking
algorithm. We also recorded the distance between the
sources and the agents nearest to the sources at each 

time step to present how quickly the agents can
approach the sources. Figure 3 presents these results. 
In different kinds of environment cases, the BESA
approach requires only half of the time-steps that
gradient seeking approach used for locating all 
emission sources. Figure and (b) also demonstrate
that the performance is stable while the
gradient seeking approach's performance is greatly 
reduced in the environment cases influenced by
random noise and local maximum concentration spots. 

W

Figure 3 Distance sum between sources and 
nearest agent VS time-step (a) Ideal case
without any environment impact. (b) 1%
random sensor detection errors and 40
random size localized aerosol accumulations 

In Figure 4, we present the total distance between
all agents and the sources at each time step. This gives
us an idea about the potential of the agent swarm
moving toward the sources. As expected, Figure 4 (a)
and (b) demonstrates that the BESA approach controls 
the whole agent swarm to quickly reduce their 
distance from the sources and also gathers the 
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remaining agents into the area near the source when
the source is located by one agent. This allows for
additional collaboration, such as task allocation and
heterogeneous agent cooperation in the area, if
needed. On the contrary, the gradient seeking
approach charts (Figure 4) indicate that the distance
between the agent swarm and emission sources 
reduces slowly. That is because in the gradient seeking
approach, a random movement had to be implemented
to help individual agent escape the trap of the local
aerosol accumulation spots. This random movement is
also executed when the agent cannot find a positive
gradient phenomenon. This behavior randomly 
deploys agent members in the environment and it
hinders collaborative multi-agent work on the same
task.

6. Conclusion

In this paper, we present a new approach, BESA,
for coordinating multiple simple homogeneous mobile
agents in the searching of gas or aerosol emission 
sources in a large-scale area. The swarm behavior
used in the approach ensures all agent members 
maintain a dynamically stable ad-hoc communication 
network for collaboratively exploration and overlap
avoidance. Compared to most gradient seek
approaches, which can be trapped in local areas of
high concentration, the BESA considers the sensor
reading of all swarm members to determine a direction
for the swarm as a whole. This will help immunize the
agent swarm from random sensor errors, local aerosol 
accumulation and other local interference effect
during their exploration.

The BESA performance was simulated with two
aerosol-emission sources under different
environmental scenarios. The simulation
demonstrated that the BESA has better performance
than the gradient seek approach. At the same time, the
BESA approach guides the entire agent swarm to
quick convergence to the cells surrounding the
sources. This compares favorably with the gradient
seek approach that randomly deploys agent members
in the environment. Although in our search task 
scenario, when one agent moves into a cell with an
emission source, the task is finished. Gathering all
agent swarm members at the area near the sources is
not required. This “side effect” feature of the BESA
approach gives us a clue that it is also a potential task
allocation algorithm for applications such as disaster
rescue that require multiple heterogeneous agents. 
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