
Flocking-based Document Clustering on the
Graphics Processing Unit

Jesse St. Charles1, Thomas E. Potok2, Robert Patton3, and Xiaohui Cui4

1 University of Tennessee, Chattanooga, TN, USA jesse-stcharles@utc.edu
2 Oak Ridge National Laboratory, Oak Ridge, TN, USA potokte@ornl.gov
3 Oak Ridge National Laboratory, Oak Ridge, TN, USA pattonrm@ornl.gov
4 Oak Ridge National Laboratory, Oak Ridge, TN, USA cuix@ornl.gov

Summary. Analyzing and grouping documents by content is a complex problem.
One explored method of solving this problem borrows from nature, imitating the
flocking behavior of birds. Each bird represents a single document and flies toward
other documents that are similar to it. One limitation of this method of document
clustering is its complexity O(n2). As the number of documents grows, it becomes
increasingly difficult to receive results in a reasonable amount of time. However,
flocking behavior, along with many naturally inspired algorithms such as ant colony
optimization and particle swarm optimization, are highly parallel and have found
increased performance on expensive cluster computers. In the last few years, the
graphics processing unit (GPU) has received attention for its ability to solve highly-
parallel and semi-parallel problems much faster than the traditional sequential pro-
cessor. Some applications see a huge increase in performance on this new platform.
The cost of these high-performance devices is also marginal when compared with
the price of cluster machines. In this paper, we have conducted research to exploit
this architecture and apply its strengths to the document flocking problem. Our
results highlight the potential benefit the GPU brings to many naturally inspired
algorithms. Using the CUDA platform from NIVIDA, we developed a document
flocking implementation to be run on the NIVIDA R©GEFORCE 8800. Additionally,
we developed a similar but sequential implementation of the same algorithm to be
run on a desktop CPU. We tested the performance of each on groups of news articles
ranging in size from 200 to 3000 documents. The results of these tests were very
significant. Performance gains ranged from three to nearly five times improvement
of the GPU over the CPU implementation. Our results also confirm that each im-
plementation is of similar complexity, confirming that gains are from the hardware
and not from algorithmic benefits. This improvement in runtime makes the GPU a
potentially powerful new platform for document analysis.

1 Introduction

Analysts are continually faced with the extremely difficult task of extract-
ing relevant data from thousands to millions of documents at a time. This



2 Jesse St. Charles, Thomas E. Potok, Robert Patton, and Xiaohui Cui

problem is only being exacerbated by the large quantities of data generated
through the use of computing systems, information systems, and sensor sys-
tems. The need for fast, efficient document analysis has driven the research
community to continually develop and improve document clustering meth-
ods. One method, document flocking [4], is a nature-inspired computational
model for simulating the dynamics of a flock of entities. This method takes an
agent-based approach and relies on emergent organization to effectively clus-
ter documents. The effectiveness of this approach relies on the organization
that arises through a group of agents interacting through simple rules. In the
case of document clustering, similar documents flock together, loosely orga-
nizing themselves according to subject. This method has met with success in
clustering documents quickly, performing better traditional methods such as
K-means [4]. Unfortunately it needs to be implemented on expensive cluster
computers when trying to analyze more than a few hundred documents at
a time. Not only are these cluster-computers expensive, but they also lack
portability and are impractical in certain environments.

Our research investigates the possibility of implementing this algorithm
on more portable machines, thereby bringing the clustering ability to the an-
alyst. In our work, we compared the runtime performance of sequential and
parallel versions of the document flocking algorithm. Using an NIVIDA R©GPU
platform we saw a dramatic five fold improvement over the sequential CPU
implementation. Ultimately, we are working toward illustrating a low-cost,
high-capacity parallel computational platform suitable for most naturally in-
spired cooperative applications.

2 Background

2.1 Document Clustering

Cluster analysis is a descriptive data mining task, which involves dividing a
set of objects into a number of clusters. The motivation behind clustering a
set of data is to find its inherent structure and expose that structure as a set
of groups [1]. The data objects within each group should exhibit a large degree
of similarity while the similarity among different clusters should be minimal
[2]. Document clustering is a fundamental operation used in unsupervised
document organization, automatic topic extraction, and information retrieval.
It provides a structure for efficiently browsing and searching text.

There are two major clustering techniques: partitioning and hierarchical
[9]. Recently it has been recognized that the partitioning techniques are well
suited for clustering large document datasets due to their relatively low com-
putational requirements [10]. The best-known partitioning algorithm is the
K-means algorithm and its variants [11]. This algorithm is simple, straight-
forward and based on the firm foundation of analysis of variances. One draw-
back of the K-means algorithm is that the clustering result is sensitive to the



Flocking-based Document Clustering on the Graphics Processing Unit 3

selection of the initial cluster centroids and may converge to local optima,
instead of global ones. Additionally, K-means requires a prior knowledge of
the approximate number of clusters for a document collection.

2.2 Flocking Behavior

Social animals in nature often exhibit a form of emergent collective behavior
known as ’flocking.’ The flocking model is a biologically inspired computa-
tional model for simulating the animation of a flock of entities. In this model
each individual makes movement decisions without any communication with
others. Instead, it acts according to a small number of simple rules, depen-
dent only upon neighboring members in the flock and environmental obstacles.
These simple local rules generate a complex global behavior of the entire flock.
The basic flocking model was first proposed by Craig Reynolds [5], in which
he referred to each individual as a ”boid”. This model consists of three sim-
ple steering rules that each boid needs to execute at each instance over time:
separation (steering to avoid collision with neighbors); alignment (steering to-
ward the average heading and matching the velocity of neighbors); cohesion
(steering toward the average position of neighbors). These rules describe how
a boid reacts to other boids’ movement in its local neighborhood. The degree
of locality is determined by the range of the boid’s sensor. The boid does not
react to the flock mates outside its sensor range.

It has been shown, however, that these rules alone are not sufficient to
simulate flocking behavior in nature [4]. A Multiple Species Flocking (MSF)
model was developed to more accurately simulate flocking behavior among a
heterogeneous population. MSF includes a feature similarity rule that allows
each boid to discriminate among its neighbors and only flock with those sim-
ilar to itself. The addition of this rule allows the use of flocking behavior to
organize groups of heterogeneous documents into homogeneous subgroups.

2.3 The Graphics Processing Unit

The GPU serves as a specialized processor that is tailored to make extremely
fast graphics calculations. Demands for increasingly realistic visual represen-
tations in simulation and entertainment have driven the development of the
GPU. As is evident in Fig. 1, the most recent iteration of NIVIDA R©’s GPU
has a theoretical performance of over 100 times more floating point operations
per second than the current top-of-the-line desktop CPU (the 3.0 GHz Intel
Core2 Duo). This difference arose because the evolution of the GPU has cen-
tered on highly parallel, computationally intensive calculations rather than
data caching and flow control [6].

The immense computational power of the GPU gave rise to a community
of general-purpose GPU programmers (www.gpgpu.org). In the early stages,
programming for the GPU was non-intuitive. Vertex shader languages, such
as Sh, Cg, and OpenGL, were the only ones available for general use with



4 Jesse St. Charles, Thomas E. Potok, Robert Patton, and Xiaohui Cui

the GPU. These focused entirely on the graphics paradigm. Consequently,
they did not have appropriate naming constructs for general use and there-
fore were not programmer friendly. Also, early GPU architectures had basic
limitations that physically prevented some common programming operations
to be done [3]. To solve some of these problems and encourage general use of
the GPU, NIVIDA R©developed the GPU language CUDA as well as a more
robust architecture for its GPUs.

Fig. 1. Floating-Point Operations per Second for the CPU and GPU [6]

2.4 NVIDIA R©CUDA

CUDA stands for Compute Unified Device Architecture [6]. It is a C-like
language that allows programmers to easily write programs to be run directly
on certain NIVIDA R©GPUs. CUDA 1.0, used in this research, was released in
July 2007. CUDA programs can be run using any graphics cards that use the
G8x architecture [6]. Depending on the model number, members of the G8x
family will have between two and sixty-four SIMD processors. Each SIMD
processor contains eight processing elements and has access to 16KB of fast,
locally shared memory, 64KB of locally cached texture memory, and 64KB
of locally cached constant memory. All multiprocessors also have access to
slower main device memory.

Since CUDA was developed to be run on a parallel architecture, certain
parallel programming constructs and limitations are inherent to the language.
Execution on this architecture is thread-based. Threads are organized into
blocks and executed in groups of 32 threads called warps. Blocks are orga-
nized in groups called grids. All threads in a single block will execute on a
single multi-processor and can exchange data through that processor’s shared
memory. The algorithm that is executed on the GPU directly is called a ker-
nel. To run a kernel on the GPU, dimensions for the number of blocks and the
number of threads per block must be specified. The unique ID of each thread



Flocking-based Document Clustering on the Graphics Processing Unit 5

and block is then used to access data unique to it. A thread running on the
GPU does not have access to CPU main memory. Once a kernel is run by the
host (CPU), its GPU blocks all communication to and from the host, until
all threads spawned by the kernel die. During kernel execution the host does
not spin and can spawn additional kernels in other graphics cards present in
the system.

2.5 Related Work

According to our literature research, there is no active research being per-
formed that uses the GPU to analyze documents. However, the last year has
seen a great deal of activity from researchers trying to exploit the GPU for
other applications. Chitty recently used the GPU to implement genetic al-
gorithms and saw significant improvement when dealing with larger volumes
of fitness cases[12]. Rick and Mathar produced a fast radio-wave propagation
model on the GPU to help with the optimization of radio cellular networks.
They found exceptional performance, achieving ’extremely fast computation
times’ [13]. Marichal-Hernandez et al. used the GPU to reconstruct wave-
fronts using fast Fourier transforms. Their research was aimed at achieving
near real-time results and found a five fold improvement on the GPU over a
high-end CPU [14]. Yamagiwa et al. developed a high-performance, uniform
programming interface to the GPU. Their results showed a performance in-
crease of more than fifty-percent [15]. Fang et al. recently used CUDA and
DirectX to turn the GPU into a Query-coprocessor [8], this research is ongoing
but initial results are promising.

3 Approach

3.1 Experimental Environment

In setting up our research we made an attempt to use low cost, commercially
available equipment to help underline the cost and performance benefits of
our approach. All tests that we performed were run on a single desktop work-
station, the Dell Precision 370. This machine houses 4GB of RAM and a single
3.6GHz Intel processor with hyper-threading. We added an NIVIDA R©Geforce
8800GTS graphics card to the workstation to enable the use of CUDA. The
8800GTS contains 14 SIMD processors and has 648MB of device memory.
All experiments were run under Windows XP Service Pack 2, and CUDA
programs ran under CUDA 1.0.

3.2 Challenges

Over the course of this research we encountered a few difficulties in using
the CUDA language. Since each warp is executed on a single SIMD proces-
sor, divergent threads in that warp can severely impact performance. To take



6 Jesse St. Charles, Thomas E. Potok, Robert Patton, and Xiaohui Cui

advantage of all eight processing elements in the multiprocessor, a single in-
struction is used to process data from each thread. However, if one thread
needs to execute different instructions due to a conditional divergence, all
other threads must wait until the divergent thread rejoins them. Thus, diver-
gence forces sequential thread execution, negating a large benefit provided by
SIMD processing. Another limitation in CUDA is the lack of communication
and consequently the lack of synchronization between blocks. This creates
possible problems of data consistency, typical of parallel modification of sin-
gular values. Also, currently all functionality must be written into the kernel
code. In the future, libraries could be written for CUDA as device functions
to help streamline the development process.

Debugging can be difficult in CUDA. A debug mode is available in the
CUDA compiler which forces sequential execution on the CPU by emulat-
ing the GPU architecture. While this mode is useful for most general types
of debugging, some errors are not exposed. The emulator cannot detect any
concurrency problems as its execution is sequential. Write and read hazard
behavior is undefined during thread execution on the GPU. While running a
kernel on the GPU, no access is provided to the standard output. This effec-
tively turns the GPU into a black box when it comes to runtime behavior. The
largest constraint for us in our work was the shortage of fast, local memory.
The large size of document information and the method of document compar-
ison forced frequent reading from global device memory. This memory is not
cached and has a penalty of hundreds of clock cycles per read associated with
it. We tried to reduce the impact of this problem by caching some document
terms in shared memory for fast access. Another less costly problem we ran
into was the requirement of thread divergence in the implementation. Certain
conditional statements could not be avoided. This seemed to have some ef-
fect on the performance, but not a significant one when compared with the
performance degradation of global memory reads. In an effort to improve the
speed of position retrieval and distance calculation, all document positions
were stored in texture memory. This design decision did improve the perfor-
mance of our implementation on the GPU, but it put a hard limit on the
number of documents that could be compared (roughly 3600).

3.3 Implementation

The document flocking algorithm that we used in our research was developed
by Cui and Potok [4]. This approach treats documents as boids and uses the
MSF model to cluster based on a similarity comparison between documents.
In the MSF clustering algorithm, each document vector is projected as a boid
in a 2D virtual space. The document vector is represented as the feature
of the boid. The boids that share similar document vector feature (same as
the bird’s species and colony in nature) will automatically group together and
became a boid flock. Other boids that have different document vector features
will stay away from this flock. After several iterations a document clustering



Flocking-based Document Clustering on the Graphics Processing Unit 7

result emerges. In this research, rather than use the feature similarity rule, we
nullified the alignment and cohesion rules for documents that were not similar.
Thus, for dissimilar documents, separation is the only active rule, causing
them to repel one another. This algorithm was implemented in CUDA 1.0
and was run on the GPU of our test workstation. For performance comparison
purposes, a similar but sequential implementation was written in C and run
on the CPU of the same machine.

All boids have same fixed moving speed and randomly generated moving
direction. The velocity change of each boid is implemented by altering the
boid’s direction. To adapt the document flocking algorithm in an SPMD envi-
ronment, we implement the algorithm in two kernels. The first kernel creates a
thread for each boid pair (n2 threads in total) and compares their locations in
the 2D virtual space to determine if the distance between them is within the
neighborhood threshold. If the distance is small enough, a document compar-
ison is initiated. This comparison computes the Euclidean distance between
the two documents’ feature vectors. If the distance value of the two documents
is small enough, the documents are deemed similar and treat each other as
flock mates. In every simulation step, each boid will determine its new veloc-
ity according to the rules listed in the MSF algorithm [4]. All boids that are
considered neighbors of a given boid will contribute to the modification of the
boid’s velocity. Similar documents contribute to the final velocity of each us-
ing the separation, cohesion, and alignment rules discussed earlier. Dissimilar
documents contribute to the final velocity of each using only the separation
rule. Once each document’s influence on the rest of the population is calcu-
lated, the second kernel is run. This kernel spawns n threads, each updating
the final velocity and position of a single document. Each new velocity cal-
culation is normalized in magnitude, keeping all boids moving with constant
speed. Additionally, limitations are in place in this kernel to prevent velocity
direction from changing drastically in each generation. This forces each boid
to make gradual turns, exposing them to a larger number of neighbors and
more accurately simulating the behavior of birds. When this kernel is finished
executing, a generation is finished and the cycle begins again.

4 Testing

4.1 Experimental Setup

We conducted testing on document populations of size 200 to 3000, increasing
population size by 200 for each round of tests. We tested each population size
30 times and then averaged the runtime of each. We randomly generated
values for the initial position and velocity of each document for each test
to prevent accidental initial seeding optimization. Each test ran the flocking
simulation for 200 generations. A generation occurs when all documents have
updated their positions and velocities once based on other documents present



8 Jesse St. Charles, Thomas E. Potok, Robert Patton, and Xiaohui Cui

in their neighborhood. Based on our observations, 200 generations was an
adequate number to allow the documents to converge into stable clusters of
similar documents.

The flock parameters of each simulation were identical. The ”flying” space
of the documents was 300x300 units. This size space was selected to allow ade-
quate room for each document to move. Each document had a static neighbor-
hood radius of 30 units and a constant speed of 3 units per generation. These
parameters were selected based on the flying space size and the observed be-
havior of the flocks. Each document had a maximum limit of a 0.35 radian
deviation from its previous moving direction. We gave each rule a weight that
encouraged system behavior typical of flocking birds. The use of these weights
is described in Cui [4]. We assigned a weight of 3 to the alignment rule, 5 to
the separation rule, and 3 to the cohesion rule. The document feature vector
linear distance threshold was 2.50. This value was selected as it was small
enough to clearly differentiate groups in the flock while not being so small
that it prevented flocking altogether.

We compiled the documents used for clustering in our experiments from
RSS news feeds and press releases from February 20 - 28, 2006 in no par-
ticular order. We initially processed the documents by stripping out HTML
tags, stop words, numbers, and punctuation. We then stemmed the document
content using a Porter Stemming algorithm [16]. Finally, we generated a term
frequency list using TF-ICF [7], and normalized these frequencies for direct
document comparison. In the CUDA implementation, we used the timer in
the cutil library to measure the execution time of each test. Similarly, the
CPU implementation uses the Windows high precision timer in the windows
library.

4.2 Results

Through our experiments we observed that document flocking on the GPU
is several times faster than its CPU counterpart (Fig.2). We observed that
with 200 documents the GPU implementation is roughly three times faster
than the CPU version. As we increased the number of documents in our test
set, the improvement increased. For 1000 documents, we saw an improvement
of four times over the CPU. From 1400 to 3000 documents the improvement
levels off and remains constant at approximately 4.6 times improvement of
the GPU over the CPU. While the performance has drastically improved, the
complexity of each implementation remains equivalent. The runtime of each
grows at the same rate, though at different magnitudes.

5 Conclusion and Discussion

The results that we have presented here add to the already substantial body
of work that supports the GPU as a powerful, general computational device.



Flocking-based Document Clustering on the Graphics Processing Unit 9

Fig. 2. Document Flocking runtime, CPU vs. GPU, bar graph

This power is especially evident when applied to highly parallel algorithms.
Many biologically inspired algorithms should receive a great deal of benefit
when implemented on the GPU. Those algorithms which have innate data
parallelism and a small data size per agent are most likely to full advantage
of this architecture. We believe that with continued development, document
flocking on the GPU would be an extremely versatile data clustering solution.
The low cost and portability of the GPU could allow analysts to cluster large
data sets anywhere they are needed. The low cost could also encourage small
businesses to use document clustering techniques in new ways. In future work,
performance could be increased further if a faster document-to-document com-
parison technique was implemented. This was our most substantial bottleneck
to additional performance gains. Distributing the document flocking algorithm
across many GPUs could also substantially improve the number of documents
that can be handled during a simulation, possibly allowing millions of doc-
uments to be clustered quickly. We did not conduct our tests on the fastest
graphics card available from NIVIDA. The currently unreleased Tesla archi-
tecture has 52 additional multiprocessors with over twice the amount of device
memory. These additional capabilities would greatly enhance the already high
performance we saw in our tests.

Standard Credit Line

Prepared by Oak Ridge National laboratory P. O. Box 2008 Oak Ridge, Ten-
nessee 37831-6285 Managed by UT-Battelle, LLC For the U.S. Department
of Energy Under contract DE-AC05-00OR22725

Copyright Notice

This manuscript has been authored by UT-Battelle, LLC, under contract DE-
AC05-00OR22725 with the U.S. Department of Energy. The United States



10 Jesse St. Charles, Thomas E. Potok, Robert Patton, and Xiaohui Cui

Government retains and the publisher, by accepting the article for publica-
tion, acknowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States Govern-
ment purposes.

References

1. Anderberg M R (1973) Cluster Analysis for Applications. Academic Press, Inc.
New York

2. Jain A K, Murty M N, Flynn P J,(1999) Data clustering: a review. ACM
Computing Surveys 31:264–323

3. Owens J D, et al (2007) A Survey of General Purpose Computation on Graphics
Hardware. Computer Graphics Forum Volume 26:80–113

4. Cui X, Potok T (2006) A Distributed Flocking Approach for Information
Stream Clustering Analysis. snpd-sawn, pp. 97-102, Seventh ACIS Interna-
tional Conference on Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing (SNPD’06)

5. Reynolds C W (1987) Flocks, Herds, and Schools: A Distributed Behavioral
Model. Computer Graphics (ACM) 21:25–34

6. NIVIDA R©(2007) NIVIDA R©CUDA: Compute Unified Device Architecture
NIVIDA R©, http://developer.NIVIDA.com/cuda, Version 1.0

7. Reed J, et al (2006) TF-ICF: A New Term Weighting Scheme for Clustering
Dynamic Data Streams. in: Proc. Machine Learning and Applications. ICMLA
’06, pp. 258–263.

8. Fang R, et al (2007) GPUQP: query co-processing using graphics processors.
in: Proceedings of the 2007 ACM SIGMOD international conference on Man-
agement of data, pp. 1061–1063.

9. Jain A K, Murty M N, Flynn P J (1999) Data clustering: a review. ACM
Computing Surveys 31:264-323.

10. Steinbach M, Karypis G, Kumar V (2000) A comparison of document clustering
techniques. KDD Workshop on Text Mining, pp 20–23

11. Selim S Z, Ismail M A (1984) K-Means-Type Algorithms: A Generalized Con-
vergence Theorem and Characterization of Local Optimality. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence PAMI-6, pp. 81–87

12. Chitty D (2007) A Data Parallel Approach to Genetic Programming Using
Programmable Graphics Hardware. Proceedings of the 9th annual conference
on Genetic and evolutionary computation, pp. 1566–1573.

13. Rick T, Mathar R (2007) Fast Edge-Diffraction-Based Radio Wave Propagation
Model for Graphics Hardware. Proceedings of ITG INICA.

14. Rodrguez-Ramos J, et al (2006) Modal Fourier wavefront reconstruction on
graphics processing units. Proceedings of the SPIE, Volume 6272, pp. 15.

15. Yamagiwa S, et al (2007) Data Buffering Optimization Methods toward a Uni-
form Programming Interface for GPU-based Applications. Proceedings of the
4th international conference on Computing frontiers, pp. 205–212.

16. Porter M F(1980) An algorithm for suffix stripping. Program, 14 no. 3, pp
130–137


