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ABSTRACT
Accelerating hardware devices represent a novel promise for im-
proving the performance for many problem domains but it is not
clear for which domains what accelerators are suitable. While there
is no room in general-purpose processor design to significantly in-
crease the processor frequency, developers are instead resorting to
multi-core chips duplicating conventional computing capabilities on
a single die. Yet, accelerators offer more radical designs with a
much higher level of parallelism and novel programming environ-
ments.

This present work assesses the viability of text mining on CUDA.
Text mining is one of the key concepts that has become prominent
as an effective means to index the Internet, but its applications range
beyond this scope and extend to providing document similarity met-
rics, the subject of this work. We have developed and optimized text
search algorithms for GPUs to exploit their potential for massive
data processing. We discuss the algorithmic challenges of paral-
lelization for text search problems on GPUs and demonstratethe
potential of these devices in experiments by reporting significant
speedups. Our study may be one of the first to assess more complex
text search problems for suitability for GPU devices, and itmay also
be one of the first to exploit and report on atomic instructionusage
that have recently become available in NVIDIA devices.
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1. Introduction
Graphics programming units (GPUs) differ from general-purpose

microprocessors in their design for the single instructionmultiple
data (SIMD) paradigm. Due to the inherent parallelism of vertex
shading, GPUs adopted multi-core architectures long before regu-
lar microprocessors resorted to such a design. While this decision
was driven by the applications in the former case, it was dictated by
power and asymptotic single-core frequency limits for the latter. As
a result, today’s state-of-the-art GPUs consist of many small compu-
tation cores compared to few large cores in off-the-shelve CPUs, at
the cost of devoting less die area for flow control and data caching
in each core. And since GPUs support a higher number of peak
floating-point operations per second, researchers are increasingly
utilize by the so-called general-purpose graphics programming units
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(GPGPUs) [11, 6, 16].
It may seem that the incorporation of more cores at the expense

of flexibility impedes the adoption of GPUs in areas outside the
graphics domain. However, NVIDIA’s launch of the Compute Uni-
fied Device Architecture (CUDA) with its simple but effective pro-
gramming model has resulted in the adoption of GPUs by a di-
versity of domains [15]. The emergence of the NVIDIA CUDA
programming model has become a breakthrough toward a more
programmer-friendly environment, much in contrast to previous ap-
proaches of GPGPU environments. Since then, CUDA has been
proved to be well-suited for many applications with only moderate
amounts of algorithm re-design and coding efforts. Programmers no
longer have to master graphics-specific knowledge, such as was the
case with openGL, before being able to efficiently program GPUs.

While it has been demonstrated that CUDA can significantly
speedup many computationally intensive applications fromdomains
such as scientific computation, physics and molecular dynamics
simulation, imaging and the finance sector [7, 13, 14, 5, 3, 10],
it remains less unnoticed in other domains, especially those with
more integer computations, with few exceptions[8, 9]. Thisis partly
due to the perception of fast (vector) floating-point calculation being
one of the major contributors to performance improvement. How-
ever, careful parallel algorithm design may be able to compensate
such shortcoming, which is the premise of our work for text search
application deployment of GPUs.

We chose to implement one of the fundamental concepts used in
information retrieval and text mining, namely the term frequency /
inverse document frequency (TFIDF) rank search [2]. This algo-
rithm can be easily extended to quantitatively measure the similari-
ties between any two documents, which is our focus. It thus plays a
significant role (in many variations) in text searching, classification,
and clustering. The present work explores the opportunities of solv-
ing basic text mining problems through an efficient implementation
of TFIDF on GPUs via CUDA.

2. TFIDF Problem Description
Term frequency is a measure of how important a term is to a

document. Theith term’stf in documentj is defined as:

tfi,j =
ni,j

P

k
nk,j

(1)

whereni,j is the number of occurrences of the term in document
dj and the denominator is the number of occurrences of all termsin
documentdj .

The inverse document frequency measures the general impor-
tance of the term in a corpus of documents. It is done by dividing
the number of all documents by the number of documents contain-



ing the term, and then taking the logarithm.

idfi = log
|D|

|{dj : ti ∈ dj}|
(2)

where|D| is the total number of documents in the corpus and|{dj :
ti ∈ dj}| is the number of documents containing termti.

Then

tfidfi,j = tfi,j ∗ idfi (3)

The idea of TFIDF can be extended to compare the similarities
of two documentsdi anddj . This is done simply by expressing all
common terms’ tfidf values in two documents as dot products:

simi,j =
X

k

(tfidfk,i ∗ tfidfk,j) (4)

The larger the value is, the more similar these two documentsare
considered.

There are many ways to calculate the TFIDF given a corpus of
documents. The most straightforward method, also used by us, is
illustrated in Figure 1. The first step, which is part of the docu-
ment pre-processing prior to the core TFIDF calculation, excerpts
and tokenizes each word of a document. It is also in this step that
the stop words are removed. Stop words, also known as the noise
words, are common words that do not contribute to the uniqueness
of the document [1]. In the second step, some cognate words are
transformed into one form by applying certain stemming patterns
for each. This is necessary to obtain results with higher precision
[12]. In step three, the document hash table is built for eachdocu-
ment. The<key, value> pairs in the token hash table are the unique
words that appear in the document and their occurrence frequencies,
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Figure 1: TFIDF Workflow

respectively. In step four, all of these token hash tables are reduced
into one global occurrence table in which the keys remain thesame,
but values represent the number of documents that contain the as-
sociated key. The TFIDF for each term can be easily calculated by
looking up the corresponding values in the hash tables according to
Equation 3 as seen in step five.

3. Implementation
One of the key challenges in algorithmic design for GPGPUs is

to keep all processing elements busy. NVIDIA’s philosophy to en-
sure high utilization is to oversubscribe, i.e., more parallel work is
dispatched than there are physical stream processors available. Us-
ing latency-hiding techniques, a processor stalled on a memory ref-
erence can thus simply switch context to another dispatchedwork
unit.

In order to fully utilize the large number of streaming proces-
sors in NVIDIA’s GPUs, we process files in batches with the batch
size chosen as 64. Several kernels are developed to implement the
steps described in Section 2. The inputs of the tokenize_kernel are
raw data streams. One block is assigned to process each document
stream. In the kernel, every special character is substituted in-place
by a uniform special character and subsequently ignored. This can
be done very efficiently with coalesced global memory access. The
tokenized stream is then fed into the RemoveAffix_kernel to strip
affixes. In this kernel, document streams are divided evenlyand
processed by multiple CUDA threads.

The kernel requires extensive data movement between host and
GPU memories by DMA. First, to handle a large amount of docu-
ments/files, especially when total document size is larger than the
GPU global memory, the document hash tables needs to be flushed
out to host memory once they are completely constructed. Second,
the raw data of a document is pushed from host memory to GPU
global memory at the beginning of each batch process. To reduce
the overhead of memory movement, we developed the CPU/GPU
collaboration framework shown in Figure 2. In each batch iteration,
the CPU thread first launches the two pre-processing kernelsasyn-
chronously. Before it calls the next kernels that write to the doc-
ument hash table buffer in the GPU’s global memory, it waits for
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the completion signal of the previous batch’s DMA that transfers
the old batch table to host memory. When the GPU is busy gener-
ating the document hash tables and inserting tokens into theglobal
occurrence table, the CPU can prefetch the next batch of filesfrom
disk and copy them to an alternate file stream buffer. At the end of
the batch iteration, the CPU again asynchronously issues a memory
copy of the document hash table to the host’s memory. Only in the
next batch’s iteration will the completion of this DMA be synchro-
nized. In this manner, part of the DMA time is overlapped withthe
GPU calculation by (a) double buffering the document raw data in
GPU and (b) overlapping the hash table memory copy in the current
batch with the stream preprocessing (tokenize and stem kernels) of
the next batch [4].

To further reduce the DMA overhead, one may reduce the size of
the document hash table. This table differs from the global occur-
rence table, which resides in GPU global memory but need not be
copied to host until the end of execution. Therefore, the data struc-
tures of these tables differ slightly as shown in Figure 3. The doc-
ument hash table contains a header and an array of entries, which
are internally linked as a list if they belong to the same bucket. The
header is used to determine the bucket size and to find the firstentry
in each bucket. In contrast, the global hash table consists of a big
array of entries evenly divided into buckets. Because the number of
unique terms is considered limited no matter how large the corpus
size is, the number of buckets and the bucket size can be chosen
sufficiently large to avoid possible bucket overflows.

Another effort to reduce the size of the document hash table
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Figure 3: Hash Table Data Structures

avoids storing the actual term/word in the table. Instead, every en-
try simply maintains an index pointing to the correspondingentry
in the global occurrence table where the actual term is saved. To
reduce the number of hash key computations at hash insertionand
during hash searches, the key is saved as an “unsigned long” in both
hash tables. To further reduce the probability of hash collisions
(two terms sharing the same key), another field called identity is
added as an “unsigned int” to help differentiate terms. The iden-
tity is then constructed as(term length << 16)|(first char <<

8)|(last char).
Upon investigation, we determined that atomic operations sup-

ported by certain GPUs via CUDA are facilitating the construc-
tion of a concise document hash table without adversely affecting
the parallelism of the algorithm. We alternatively provideanother
method to generate the same hash table for GPUs without support
for atomic operations. Even though the latter method is slower than
the first, it is required for GPU devices that do not have atomic op-
eration support (i.e., devices with CUDA compute capability 1.0 or
earlier).

3.1 Hash Table Updates using Atomic Opera-
tions

Access to hash table entriesvia atomic operations is realized in
two steps as depicted in Figure 4. In the first step, the document
stream is evenly distributed to a set of CUDA threads. The number
of threads,L, is chosen explicitly to maximize GPU’s utilization.
A buffer storing the intermediate hash table, which is closeto the
structural layout of the global occurrence table, but with asmaller
number of bucketsK, is used to sort terms by their bucket IDs. Ev-
ery time a thread encounters a new term in the stream and obtains its
bucket ID, it issues an atomic increment (atomic-add-one) operation
to affect the bucket size. (Notice that the objective of thisalgorith-
mic TFIDF variant is not to identify identical terms. Instead, its
chief objective is to compute a similarity metric.) If we assume that
terms are distributed randomly, then contention during theatomic
increment operation is the exception,i.e., threads of the same warp
are likely atomically incrementing disjoint bucket size entries.

In the next step, the intermediate hash table is reduced to the final,
more concise document hash table shown in Figure 3. Each CUDA
thread traverses one bucket in the intermediate hash table,detects
duplicate terms, and, if finds a new term, reserves a place in the en-
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Document Hash Table
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size size size
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bucket K−1
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Figure 4: Building a Hash Table with Atomic Operations



try array by atomically incrementing the total size. It thenpushes
the new entry into the header of the linked bucket list. Sincediffer-
ent threads operate on disjoint buckets, each linked list per bucket
is accessed in mutual exclusion, which guarantees absence of write
conflicts between threads.

3.2 Hash Table Updates without Atomic Op-
erations

In GPUs without atomic instruction support, the document stream
is first split intoM packets, each of which is pushed into a different
hash sub-table owned by one thread in a block, as shown in step1
of Figure 5. By giving each thread a separate hash sub-table,we
guarantee write protection (mutually exclusive writes of the values)
between threads. In step 2,K threads are re-assigned to different
buckets of the sub-table, identical terms are found in this step, and
statistics for each bucket are generated. Because terms have been
grouped by their keys in step 1, there will be no write conflicts be-
tween threads at this step either. The bucket size information is
processed in step 3 to finally merge sub-tables to compose thefinal
document hash table.
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Figure 5: Building a Hash Table without Atomic Operation

3.3 Discussion
The two procedures detailed above to handle hash tokens in a

document do not require information from any other documents.
Thus, each document can be processed simultaneously and inde-
pendently in different GPU blocks. With a sufficiently largenum-
ber of documents, we can fully utilize the GPU cores and exploit
NVIDIA’s latency hiding on memory references through oversub-
scription. However, in the first step of the second method, the num-
ber of packetsM per document is delimited due to memory con-
straint and the efficiency of the following steps. We choose avalue
of M = 16 in our implementation. To compensate for this con-
straint, we can spawn more threadsL in the first method,e.g., by
choosingL = 512. This constraint on parallelism results in a non-
atomic approach that is slower than its atomic variant.

From the memory usage’s perspective, the non-atomic approach

consumes more global memory simply because the intermediate
hash tables in the non-atomic approach are larger than that in the
atomic approach. Both of the above methods cannot handle very
large single documents that exceed the size of the global memory.
Since our problem domain is that of Internet news articles, which
typically do not exceed more than 10K words, documents fits in
memory for our implementation. This framework is even suitable
for arbitrarily large corpus sizes as we could reused without changes
both intermediate hash tables and the document hash table, the latter
of which is flushed to host memory for each batch of files.

4. Experimental Results
During experimentation, our CUDA variant was compared

against a functionally equivalent CPU baseline version (single-
threaded in C/C++) of the TFIDF benchmark implementation. The
test platform was a Linux Fedora 8 Core with a dual-core AMD
Athlon 2 GHz CPU with 2 GB of memory. The installation included
the CUDA Compilation tools (Version 1.1) of the CUDA 2.0 beta
release and NVIDIA’s Geforce GTX 280 as a GPU device. The test
input data was selected by the original TFIDF designers as a subset
of Internet news documents with variable sizes ranging fromaround
50 to 1000 English words (after stop-word removal).

We first compare the execution time for one batch of 96 files. The
individual module speedup and their percentages in total are shown
in Figure 6 and Figure 7.

Notice that the speedup on the y-axis of Figure 7 is depicted on a
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logarithmic scale. Compared to the CPU baseline implementation,
we achieve more significant speedups for those modules engaged in
the pre-processing phase (factor of 30 times faster in tokenize and
20 times faster in strip affixes kernels) than for those at thehash ta-
ble construction phase (around 3 times faster in both document hash
table and occurrence table insertion kernels). The limits in speedup
during the latter are due to the multi-step hash table construction
algorithms described in Section 3. The algorithm has certain over-
heads that the CPU benchmark does not contain. These overheads
include (a) the construction of intermediate or hash sub-tables; (b)
branching penalties suffered from the SIMD nature of GPU cores
due to the imbalance in the distribution of tokens for a hash table’s
buckets; and (c) non-coalesced global memory access patterns as a
result of the randomness of the hash key generation. Furthermore,
the kernel for occurrence table insertion does not fully exploit all
GPU cores because insertion is inherently serialized over files to
avoid write conflicts within the same hash table bucket.
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Figure 7: Per-Module Contribution to Overall Execution Time

We also observe a reduction in the calculation time to the extent
that the DMA overhead has become the largest contributor to overall
time in asingle batch scenario accounting for almost half of the total
execution time. The combined time with disk I/O exceeds the total
kernel execution time on GPU.

The observation above gives us the motivation to mitigate the
memory overhead by double buffering the stream and hash tables
when the corpus size gets larger. While we cannot hide the DMA
overhead of a first batch, the DMA time of subsequent batches can
be completely overlapped with the computational kernels inamulti-
batch scenario. Figure 8 shows the execution time of CPU and
CUDA with different corpus sizes.

The execution time of both of the two aforementioned methods
are measured. With almost perfect parallelization betweenGPU cal-
culation and data migration, we can hide almost all the kernel exe-
cution time in the DMA transfer and disk I/O time, which indicates
a lower bound of the execution time. As a result the the asymptotic
average batch processing time is almost half comparing to the sin-
gle batch execution time, in which case the calculation and DMA
cannot be overlapped. We also observe that the overall acceleration
rates are 9.15 and 7.20 times faster than the CPU baseline.

5. Conclusion
In this paper, we presented a hardware accelerated implantation

of TFIDF rank search algorithm exploiting GPU devices through
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NVIDIA’s CUDA. We developed two highly parallelized methods
to build hash tables, one with and one without atomic operation
support. Even though floating-point calculations are not dominat-
ing this text mining algorithm and its text processing character-
istics limits the effectiveness due to non-synchronized branching
and diverging, data-dependent loop bounds, we achieved a signif-
icant speedup over the baseline algorithm on a general-purpose
CPU. More specifically, we achieve up to a 30-fold speedup over
CPU-based algorithms for selected phases of the problem solution
on GPUs with overall wall-clock speedups ranging from six-fold
to eight-fold depending on algorithmic parameters. This experi-
ment demonstrates the potential of GPUs to accelerate even integer-
oriented, branch-dominated massive data text mining algorithms by
carefully redesigning data structures to provide massive parallelism,
which makes these problems suitable for latency hiding by exploit-
ing task over subscription in GPUs.
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