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Abstract 

 
Particle Swarm Optimization (PSO) is a 

population-based stochastic optimization technique 
that can be used to find an optimal, or near optimal, 
solution to a numerical and qualitative problem. In the 
PSO algorithm, the problem solution emerges from the 
interactions among many simple individual agents 
called particles. In the real world, we have to 
frequently deal with searching and tracking an optimal 
solution in a dynamical and noisy environment. This 
demands that the algorithm not only find the optimal 
solution but also track the trajectory of the non-
stationary solution. The traditional PSO algorithm 
lacks the ability to track the changing optimal solution 
in a dynamic and noisy environment. In this paper, we 
present a distributed adaptive PSO (DAPSO) 
algorithm that can be used to track a non-stationary 
optimal solution in a dynamically changing and noisy 
environment.  
 
1. Introduction 

A dynamically changing environment presents a 
challenge to track an optimal solution. Because of the 
continual changes of both the external environment 
and parameters, the optimal solution in the 
environment will also change with time. This demands 
that the optimal algorithm for dynamic environment 
not only find the solution in a short time, but also track 
the trajectory of the optimal solution in the dynamic 
environment. Particle Swarm Optimization (PSO)[1] 
has been proven to be both effective and efficient to 
solve a diverse set of optimization problems.[2-6] In 
the past several years, PSO has been successfully 
applied in many research and application areas. It has 
been demonstrated that PSO could provide better 
results in a faster, cheaper way than other methods. [7]  

However, the traditional PSO algorithm lacks the 
ability to track the non-stationary optimal solution in 

the dynamically changing environment.[8] The PSO 
algorithm does not have a mechanism to respond to the 
environment change. In this paper, we propose a 
Distributed Adaptive PSO (DAPSO) for searching and 
tracking the non-stationary optimum in a dynamically 
changing environment.  

The remainder of this paper is organized as follows: 
in Sect 2, a brief overview of PSO and a discussion of 
the shortcomings of PSO in a dynamic environment 
are presented. Various modified PSO approaches for 
dynamic environment are introduced in Sect 3. In Sect 
4, the DAPSO approach is described in detail. 
Experiment setup and results in comparisons the 
performance of DAPSO and other modified PSO 
algorithms in the dynamical environment are presented 
in Sect 5. Discussion and Conclusion are in Sect 6.    
 
2. Particle Swarm Optimization Algorithm 

PSO was originally developed by Eberhart and 
Kennedy in 1995,[1] inspired by the social behavior of 
the bird flock. In the PSO algorithm, birds in a flock 
are symbolically represented as particles. These 
particles can be considered as simple agents “flying” 
through a problem space. A problem space in PSO 
may have as many dimensions as needed to model the 
problem space. A particle’s location in the multi-
dimensional problem space represents one solution for 
the problem. When a particle moves to a new location, 
a different problem solution is generated. This solution 
is evaluated by a fitness function that provides a 
quantitative value of the solution’s utility.  

The velocity and direction of each particle moving 
along each dimension of the problem space are altered 
at each generation of movement. It is the particle’s 
personal experience combined with its neighbors’ 
experience that influences the movement of each 
particle through a problem space. For every 
generation, the particle’s new location is computed by 
adding the particle’s current velocity V-vector to its 



 

location X-vector. Mathematically, given a multi-
dimensional problem space, the ith particle changes its 
velocity and location according to the following 
equations[7, 9]:  
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where, pid is the location of the particle where it 
experiences the best fitness value; pgd is the location of 
the particle experienced the highest best fitness value 
in the whole population; xid is the particle current 
location; c1 and c2 are two positive acceleration 
constants; d is the number of dimensions of the 
problem space; rand1, rand2 are random values in the 
range of (0,1). w is called the constriction 
coefficient[7] and it is computed according to Eq.(2a): 
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Eq.(1a) requires each particle to record its current 
coordinate xid, its velocity Vid that indicates the speed 
of its movement along the dimensions in a problem 
space, its personal best fitness value location vector Pid 
and the whole population’s best fitness value location 
vector Pgd. The best fitness values are updated at each 
generation based on Eq.(3), where the symbol f 
denotes the fitness function; Pi (t) denotes the best 
fitness values and the coordination where the value 
calculated; and t denotes the generation step.  
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The Pid and Pgd and their coordinate fitness values 

f(Pid) and f(Pgd) can be considered as each individual 
particle’s experience or knowledge and Equation 3 is 
the particle’s knowledge updating mechanism. In PSO, 
particles’ knowledge will not be updated until the 
particle encounters a new vector location with a higher 
fitness value than the value currently stored in its 
memory. However, in a dynamic environment, the 
fitness value of each point in the problem space may 
change over time. The location vector with the highest 
fitness value ever found by a specific particle may not 
have the highest fitness value after several generations. 
It requires the particle to renew its memory whenever 
the real environment status does not match the 

particle’s memorized knowledge. However, the 
traditional PSO lacks an updating mechanism to 
monitor the change of the environment and renew the 
particles’ memory when the environment changed. As 
a result, the particle continually uses the outdated 
experience/knowledge to direct its search, which 
inhibits the particle from following the moving path of 
the current optimal solution and eventually, results the 
particle to be easily trapped in the region of the former 
optimal solution. 
 
3. Related Work 

To stop particles using the outdated knowledge in a 
dynamic environment, Carlisle [8] and Eberhart [10] 
proposed to periodically reset all particles’ memory 
and replace the particle’s best fitness value and 
location vector with its current location vector and 
fitness value to force the particle to “forget” its former 
experience. One major disadvantage of this reset 
mechanism is the difficulty of determining the reset 
frequency. Without prior-knowledge about the 
environment changing frequency, the particle’s 
memory reset frequency needs to be a high value to 
capture the changing step of the environment.  

However, high resetting frequency reduces the 
efficiency of the convergence of the PSO. The essence 
of the PSO algorithm lies in each particle’s learning 
from both its past search experience and its neighbor’s 
past search experience and utilizing this knowledge to 
guide its next moving velocity. Periodic resetting may 
cause all particles to lose their knowledge gathered 
during the search and restart learning. This decreases 
the search efficiency of the swarm. Especially during 
the initial period of searching, frequently resetting the 
personal best vector may cause particles unable to 
quickly converge on the vicinity of the optimal 
solution. Following each reset, the optimization 
algorithm needs extra time to re-evaluate each 
particle’s current fitness value.   

In 2002, Carlisle [11] proposed an adaptive PSO 
(APSO) for monitoring and reacting the changing of 
the dynamic environment. Carlisle introduced a new 
notion, “sentry”, in his APSO algorithm. The “sentry” 
is one or many special designed particles that are 
deployed in the problem space to monitor the 
environment changes. When the “sentry” detects a 
change in the environment, it informs all others and 
forces other particles to reset their memory.  

However, the “sentry” can only detect the local 
changes where the “sentry” point resided. Some 
complex environments only exhibit local changes, 
which may not be detected by the “sentry”. In most 
real world applications, the fitness value is not stable 



 

because of the environment noise interference, the 
“sentry” may be constantly triggered by the 
environment noise and requesting all other particles 
reset their memory. In addition, this algorithm alters 
the classical PSO’s decentralized processing model 
into an essentially centralized control model. All other 
particles have to depend on one or a limited number of 
sentries for detecting and reacting to the change of the 
environment, which reduces the robustness of the 
whole system. Designing a particle that is capable of 
working as a sentry to monitor the environment will 
also increase the complexity of the entire system and 
make it hard to implement the modified PSO in a 
distributed environment. 

Inspired from the multi-population Evolutionary 
Algorithm approaches, Blackwell[12] proposed a 
multi-swarm PSO that maintains multiple particle 
groups that mutually repels each other to prevent all 
particles from converging at the same optimum. The 
multiple particle group approach is adaptive in a highly 
complex multimodal dynamic environment where 
multiple peeks exist. However, this adaptive is 
generated by largely increasing the particle number in 
the algorithm, which eventually increases the 
computational complex of the algorithm. It is 
necessary to find a new method for particles to renew 
their memory without any centralized control and to 
maintain simplicity of each particle. 
 
4. Distributed Adaptive PSO Approach 

In this research, we propose a new modified PSO, 
the distributed adaptive PSO approach (DAPSO). In 
DAPSO, there is no specially designed particle to 
monitor the change of the environment and there is no 
additional fitness evaluation computing to enable the 
particle to adapt to the changed environment. Like the 
traditional PSO, each particle uses the Eq (1) to 
determine its next velocity. The only difference is each 
particle will compare the fitness value of its current 
location with that of its previous location. If the current 
fitness value doesn’t have any improvement compare 
to the previous value, the particle will use Eq.(4) for 
the fitness value update. Eq.(4) is slightly different 
compare to the traditional fitness value update function 
in Eq.(3).  
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In Eq.(4), a new notion, the evaporation constant T, 

is introduced. T has a value between 0 and 1. The 
personal fitness value that is stored in each particle’s 
memory and the global fitness value of the particle 

swarm will gradually evaporate (decrease) at the rate 
of the evaporation constant T over time.  

Once the particle continuously fails for improving 
its current fitness value by using its previous searching 
experience, the particle’s personal best fitness value as 
well as the global best fitness value will gradually 
decrease. Eventually, the personal and global best 
fitness value will be lower than the fitness value of the 
particle’s current location and the best fitness value 
will be replaced by the particle’s current fitness value. 
Although all particles have the same evaporation 
constant T, each particle’s updating frequency may not 
be the same. The updating frequency depends on the 
particle’s previous personal best fitness value f(P) and 
the current fitness value f(X) that the particle acquired. 
The particle will update its best fitness value more 
frequently by using the current fitness value when the 
f(P) is lower and the f(X) is higher. However, when 
the f(P) is higher and the f(X) is lower in a changing 
environment, it indicates the particle’s current location 
is far away from the current optimal solution compared 
to the distance between the optimal solution and the 
best fitness value’s position stored in the particle’s 
memory. Usually the new environment (after change) 
is closely related to the previous environment from 
which it evolutes. It would be beneficial to use the 
knowledge/experience about the previous search space 
to help searching for the new optimal. In this situation, 
the particle will keep the best fitness value in its 
memory until the best fitness value becomes obsolete. 
The fitness value update equation enables each particle 
to self-adapt to the changing environment. This 
mechanism is similar to the human society’s 
knowledge/experience learning and updating. Human 
obtains knowledge through personal experience and 
social experience. When human can not improve 
his/her problem solving capability by following the 
experience and knowledge he or she early acquired, he 
or she may gradually reduce the weight of the 
knowledge in his/her problem solving practice and 
gradually alter the knowledge with the new knowledge 
or experience obtained from practice. 
 
5. Experimental Implementation 
5.1. Environmental Simulation 

The simulated dynamic environment can be 
constructed by using the Test Function Generator, 
DF1, proposed by Morrison and De Jong.[13] The 
generator is capable of generating a given number of 
peaks (optimal solutions) in a given number of 
dimensions. For a two dimensional problem, the static 
evaluation function in DF1 is defined as following:  
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where N denotes the number of peaks in the 
environment. The (xi, yi) represents each cone’s 
location. Ri and Hi represent the cone’s height and 
slope.   

Different movement functions generate different 
types of dynamic changing environments. In this 
research, the environment changing rate is controlled 
through the following logic function [13] :  
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where A is a constant and Yi is the value at the 
iteration. The Y value produced on each iteration will 
be used to control the changing step sizes of the 
dynamic environment. In this research, the dynamic 
environment is simulated by the movement of the 
cone’s location (xi, yi). The Y value represents the cone 
location’s moving velocity.  

In the real applications, the evaluated fitness value 
can not always be calculated in precision. Most of the 
time, the fitness value will be polluted by some degree 
of noise. To simulate this kind of noise pollution in the 
fitness evaluation of the dynamic environment, we 
generate the noise polluted fitness value with the 
following approach. At each iteration, the fitness value 
f(x) can only be obtained in the form of fn(x), where 
fn(x) is the approximation of f(x) and contains a small 
amount of noise n. The function can be represented 
as[14]:  
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where η  is a Gaussian distributed random variable 
with zero mean and variance 2σ . Therefore, at each 
time, the particle will get a fn(x) evaluation value 
instead of f(x).  
 
5.2. Experiment Setup 

To evaluate the efficiency of the DAPSO algorithm 
in tracking the movement of the optimum in a dynamic 
environment, the performance of the DAPSO 
algorithm and the three different modified PSO 
algorithms are compared over the dynamic 
environment generated by using DF1. These four PSO 
algorithms include DAPSO, standard PSO, APSO[11] 
and PSO with constant memory reset. [10] These PSO 
models share the same standard PSO configuration and 
are tested in the same dynamical environment. Twenty 
particles are randomly distributed in a two dimensional 
environment with ±100 width in each dimension. All 

of these four PSO algorithms use Eq.(1) as their 
velocity update mechanism. In Eq.(1), c1 and c2 are set 
to 2.05 and Vmax is set to 0.03*dimension size. [10] 
The value of w is set to 0.72. [7] The algorithms are 
implemented with Matlab 6.5® and run on a 3.0G HZ 
CPU and 2.0G memory Windows XP platform.  

The first implementation is the proposed DAPSO 
algorithm. In this implementation, particles use Eq.(4) 
to update their best fitness value.  The evaporation 
constant Tp for the personal best fitness value and the 
constant Tg for the global best fitness value are set as 
exp(-0.85) and exp(-3/particles number). The detail of 
discovering the values of  Tp and Tg is discussed in. 
[15]  

The second implementation is the PSO with 
constant memory resetting model. In this modified 
PSO algorithm, all particles will automatically reset the 
personal best fitness value and location vector and 
replace them with the particle’s current fitness value 
and location vector in a pre-set frequency. In this 
experiment, we set the reset frequency as 15 iterations. 

In the implementation of the APSO algorithm, at 
every iteration, a randomly chosen particle is 
automatically elected as the “sentry”. This “sentry” 
particle will not update its moving speed and location 
as other particles. Instead, it will re-evaluate the fitness 
value of its previous location. If the value changed, the 
“sentry” will alarm all other 19 particles and force each 
particle to replace the personal best fitness value and 
location vector with the particle’s current fitness value 
and location vector. As we discussed in the previous 
session, the sentry may be triggered by the noise 
polluted fitness value and it will cause all particles to 
frequently reset the memory even though the 
environment doesn’t change. In this implementation, a 
noise threshold is introduced. The sentry will alarm 
other particles to reset the memory only when the 
difference between the current fitness value and the 
previous fitness value is larger than the noise 
threshold. Although it takes extra time for the sentry to 
monitor the change of the dynamic environment, the 
reset memory frequency in APSO more accurately 
indicates the change of the dynamic environment than 
the PSO with constantly reset memory model. 

The last implementation in the experiment is the 
standard PSO algorithm, which is used as the reference 
for the three modified PSO implementation. The 
difference of the standard PSO from the traditional 
PSO is the standard PSO uses different parameters to 
make particles that can quickly converge to the optimal 
solution. 
 



 

5.3 Measurement  
The ability for the algorithm to track optimum in 

the dynamic environment is measured by the distance 
between the particle with the best fitness value and the 
cone with the highest peak at each iteration. The 
distance value shows the tracking ability of algorithm 
in the entire searching procedure. If the algorithm can 
keep at least one particle located in a short distance 
from the optimal solution at anytime, regardless of the 
solution’s movement, this distance value will be kept 
in low value in the whole searching period. In this 
research, the iterations for searching optimum are set 
as 200. Each algorithm implementation will run 100 
times, and the distance value of every iteration is the 
average value over 100 runs. 

 
6. Experiment Results  

The performances of the four algorithms in tracking 
non-stationary optimal solution are shown in Fig 1.  
Figure 1 displays the shortest distance values between 
the optimal solution and the particles controlled by 
each algorithm from iteration 10 to iteration 200. The 
smaller the distance value, the better the algorithm’s 
solution in the dynamic environment. At the initial 
stage, particles are randomly deployed in the 
environment and the distance between the particle and 
the optimal solution are usually high. For easy 
displaying the change pattern of the distance value in 
the high iteration stage, the distance value for iteration 
1 to iteration 10 are not displayed in Fig 1.  

As shown in Fig 1, compared to the other three 
algorithms, DAPSO performs efficiently in the 
dynamically changing environment. Although the 
optimal solution is continually changing in the entire 
searching period, the DAPSO algorithm can maintain 
the lowest distance (below 0.5) between the best 
fitness value particle and the optimal solution.  

The APSO algorithm is the second best efficient 
dynamic optimization tracking algorithm in the 
experiment. The APSO algorithm implementation can 
maintain the shortest distance from the optimal 
solution between 0.5 and 1.  

The PSO with constant memory reset model 
implementation generates a saw shape curve of the 
distance between the best solution of algorithm and the 
optimal solution. As we indicated in Sect 2, frequently 
resetting the particle’s memory will result in losing the 
tracking of the optimal solution and it cost the 
algorithm several additional iterations to re-discover 
the new optimum in the environment. On the other 
hand, low frequency resetting may cause the algorithm 
to be trapped in an outdated optimum location until the 
memory resetting start.  

The distance values for the standard PSO model are 
too high to be displayed in the same figure with the 
other three modified PSO distance values. In Fig 1, we 
use the distance’s log value to represent the changing 
pattern of shortest distance from particles to the 
optimal solution. As shown in Fig 1, the standard PSO 
algorithm failed to track the movement of the optimal 
solution in the dynamically changing environment.   
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Fig 1, Performance comparison of DAPSO, 
PSO with constant memory reset, APSO and 
traditional PSO. 
 

The quantitative comparison of the tracking 
performances between different PSO models is shown 
in Table 1. The summary of the distance values of each 
PSO model during the whole searching procedure are 
listed in the table. DAPSO has the lowest distance 
summary value that indicates the DAPSO can maintain 
the shortest distance between the particle and the 
optimal solution. Therefore, the DAPSO has the best 
performance in continuously tracking the movement of 
the optimal solution in a dynamically changing 
environment.  

 
Table 1.  The Summary of the Distance Value 

between the Optimal Solution and the Particle that has 
the Highest Fitness Evaluation Value of all Iterations  

Algorithms Summary of distance
DAPSO 90.99 
APSO 217.69 

Traditional PSO 8818 
PSO with constantly memory reset 284.48 

 
7. Discussion and Conclusion 

Most papers reporting applications of the 
optimization algorithms only discuss the scenario in 
the static environment. The performance evaluation of 
various approaches is mainly based on how fast an 
approach can find the optimal point in the benchmark 
problems. It has been proven that PSO is very effective 



 

in applications with static environment. However, the 
real world is rarely static, and a frequently changing 
solution space may cause the optimal solutions 
changing over time. The optimal solution found at time 
T1 may no longer valid at time T2. When the problem 
space is dynamically changing, the goal of 
optimization is not only to acquire the optimal solution 
but also to track the solution’s trajectory in the whole 
searching procedure as closely as possible. The 
traditional PSO has difficulty in tracking the non-
stationary solutions. The reason is that PSO lacks a 
mechanism to update each particle’s knowledge 
obtained from the environment. That will induce a bias 
toward searching the region that once held the 
optimum; however, this region may not contain the 
most recent goal.  

In this paper, we present a new approach, 
DAPSO, a modified PSO, for tracking the optimization 
solution in a dynamically changing environment. 
Unlike other adaptive PSO algorithms for the 
dynamical environment, which needs one or more 
special designed “sentry” particles to detect the change 
of the environment and to control other particles’ 
action, each particle in DAPSO individually updates its 
knowledge based on the local environment status that 
the particle perceived. Furthermore, all particles in the 
DAPSO system are homogenous.  

In DAPSO, each particle adaptively updates its 
memory based on the performance results stored in its 
memory and the local environment. If its performance 
doesn’t improve when the particle uses the previous 
searching knowledge stored in its memory, the particle 
will gradually reduce the impact of the stored 
knowledge on its decision for the next searching 
direction and speed. If the particle finds the newest and 
better fitness value, the value and location vector will 
be used to replace the outdated knowledge that is 
stored in the particle’s memory. The updating 
frequency of the particle’s memory is determined by 
the individual particle’s knowledge evaporation rate 
and the current fitness value that the particle perceived 
from the point it located. Each particle in the system 
may update its memory in different generations. Thus, 
each particle does not need to know the results from 
other particles of the population until a global best is 
found. DAPSO can be easily implemented in a 
distributed computing environment because the 
centralized control is not required in DAPSO. 

Our simulation experiment results indicate that 
DAPSO can more efficiently track the movement of an 
optimal solution in a dynamically changing 
environment, than other modified PSO models. 
Because each particle updates its memory only based 
on its perception and its knowledge evaporation rate, 

this DAPSO algorithm can avoid losing tracking the 
optimal solution as happened in other modified PSO 
approaches that are based on resetting the memory 
periodically.  
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