
1-4244-0910-1/07/$20.00 ©2007 IEEE

Distributed Adaptive Particle Swarm Optimizer in Dynamic Environment

Xiaohui Cui and Thomas E. Potok

Applied Software Engineering Research

Computational Sciences and Engineering Division
Oak Ridge National Laboratory

Oak Ridge, TN 37831-6085
cuix, potokte@ornl.gov

Abstract

Particle Swarm Optimization (PSO) is a

population-based stochastic optimization technique
that can be used to find an optimal, or near optimal,
solution to a numerical and qualitative problem. In the
PSO algorithm, the problem solution emerges from the
interactions among many simple individual agents
called particles. In the real world, we have to
frequently deal with searching and tracking an optimal
solution in a dynamical and noisy environment. This
demands that the algorithm not only find the optimal
solution but also track the trajectory of the non-
stationary solution. The traditional PSO algorithm
lacks the ability to track the changing optimal solution
in a dynamic and noisy environment. In this paper, we
present a distributed adaptive PSO (DAPSO)
algorithm that can be used to track a non-stationary
optimal solution in a dynamically changing and noisy
environment.

1. Introduction

A dynamically changing environment presents a
challenge to track an optimal solution. Because of the
continual changes of both the external environment
and parameters, the optimal solution in the
environment will also change with time. This demands
that the optimal algorithm for dynamic environment
not only find the solution in a short time, but also track
the trajectory of the optimal solution in the dynamic
environment. Particle Swarm Optimization (PSO)[1]
has been proven to be both effective and efficient to
solve a diverse set of optimization problems.[2-6] In
the past several years, PSO has been successfully
applied in many research and application areas. It has
been demonstrated that PSO could provide better
results in a faster, cheaper way than other methods. [7]

However, the traditional PSO algorithm lacks the
ability to track the non-stationary optimal solution in

the dynamically changing environment.[8] The PSO
algorithm does not have a mechanism to respond to the
environment change. In this paper, we propose a
Distributed Adaptive PSO (DAPSO) for searching and
tracking the non-stationary optimum in a dynamically
changing environment.

The remainder of this paper is organized as follows:
in Sect 2, a brief overview of PSO and a discussion of
the shortcomings of PSO in a dynamic environment
are presented. Various modified PSO approaches for
dynamic environment are introduced in Sect 3. In Sect
4, the DAPSO approach is described in detail.
Experiment setup and results in comparisons the
performance of DAPSO and other modified PSO
algorithms in the dynamical environment are presented
in Sect 5. Discussion and Conclusion are in Sect 6.

2. Particle Swarm Optimization Algorithm

PSO was originally developed by Eberhart and
Kennedy in 1995,[1] inspired by the social behavior of
the bird flock. In the PSO algorithm, birds in a flock
are symbolically represented as particles. These
particles can be considered as simple agents “flying”
through a problem space. A problem space in PSO
may have as many dimensions as needed to model the
problem space. A particle’s location in the multi-
dimensional problem space represents one solution for
the problem. When a particle moves to a new location,
a different problem solution is generated. This solution
is evaluated by a fitness function that provides a
quantitative value of the solution’s utility.

The velocity and direction of each particle moving
along each dimension of the problem space are altered
at each generation of movement. It is the particle’s
personal experience combined with its neighbors’
experience that influences the movement of each
particle through a problem space. For every
generation, the particle’s new location is computed by
adding the particle’s current velocity V-vector to its

location X-vector. Mathematically, given a multi-
dimensional problem space, the ith particle changes its
velocity and location according to the following
equations[7, 9]:

))(**
)(**(*

22

11

idgd

idididid

xprandc
xprandcvwv

−
+−+=

 (1a)

ididid vxx += (1b)

where, pid is the location of the particle where it
experiences the best fitness value; pgd is the location of
the particle experienced the highest best fitness value
in the whole population; xid is the particle current
location; c1 and c2 are two positive acceleration
constants; d is the number of dimensions of the
problem space; rand1, rand2 are random values in the
range of (0,1). w is called the constriction
coefficient[7] and it is computed according to Eq.(2a):

ϕϕϕ 42

2
2 −−−

=w (2a)

4,21 >+= ϕϕ cc (2b)

Eq.(1a) requires each particle to record its current
coordinate xid, its velocity Vid that indicates the speed
of its movement along the dimensions in a problem
space, its personal best fitness value location vector Pid
and the whole population’s best fitness value location
vector Pgd. The best fitness values are updated at each
generation based on Eq.(3), where the symbol f
denotes the fitness function; Pi (t) denotes the best
fitness values and the coordination where the value
calculated; and t denotes the generation step.

⎩
⎨
⎧

+
=+

)1(
)(

)1(
tX

tP
tP

i

i
i

))(())1((
))(())1((

tXftXf
tXftXf

ii

ii

>+
≤+ (3)

The Pid and Pgd and their coordinate fitness values

f(Pid) and f(Pgd) can be considered as each individual
particle’s experience or knowledge and Equation 3 is
the particle’s knowledge updating mechanism. In PSO,
particles’ knowledge will not be updated until the
particle encounters a new vector location with a higher
fitness value than the value currently stored in its
memory. However, in a dynamic environment, the
fitness value of each point in the problem space may
change over time. The location vector with the highest
fitness value ever found by a specific particle may not
have the highest fitness value after several generations.
It requires the particle to renew its memory whenever
the real environment status does not match the

particle’s memorized knowledge. However, the
traditional PSO lacks an updating mechanism to
monitor the change of the environment and renew the
particles’ memory when the environment changed. As
a result, the particle continually uses the outdated
experience/knowledge to direct its search, which
inhibits the particle from following the moving path of
the current optimal solution and eventually, results the
particle to be easily trapped in the region of the former
optimal solution.

3. Related Work

To stop particles using the outdated knowledge in a
dynamic environment, Carlisle [8] and Eberhart [10]
proposed to periodically reset all particles’ memory
and replace the particle’s best fitness value and
location vector with its current location vector and
fitness value to force the particle to “forget” its former
experience. One major disadvantage of this reset
mechanism is the difficulty of determining the reset
frequency. Without prior-knowledge about the
environment changing frequency, the particle’s
memory reset frequency needs to be a high value to
capture the changing step of the environment.

However, high resetting frequency reduces the
efficiency of the convergence of the PSO. The essence
of the PSO algorithm lies in each particle’s learning
from both its past search experience and its neighbor’s
past search experience and utilizing this knowledge to
guide its next moving velocity. Periodic resetting may
cause all particles to lose their knowledge gathered
during the search and restart learning. This decreases
the search efficiency of the swarm. Especially during
the initial period of searching, frequently resetting the
personal best vector may cause particles unable to
quickly converge on the vicinity of the optimal
solution. Following each reset, the optimization
algorithm needs extra time to re-evaluate each
particle’s current fitness value.

In 2002, Carlisle [11] proposed an adaptive PSO
(APSO) for monitoring and reacting the changing of
the dynamic environment. Carlisle introduced a new
notion, “sentry”, in his APSO algorithm. The “sentry”
is one or many special designed particles that are
deployed in the problem space to monitor the
environment changes. When the “sentry” detects a
change in the environment, it informs all others and
forces other particles to reset their memory.

However, the “sentry” can only detect the local
changes where the “sentry” point resided. Some
complex environments only exhibit local changes,
which may not be detected by the “sentry”. In most
real world applications, the fitness value is not stable

because of the environment noise interference, the
“sentry” may be constantly triggered by the
environment noise and requesting all other particles
reset their memory. In addition, this algorithm alters
the classical PSO’s decentralized processing model
into an essentially centralized control model. All other
particles have to depend on one or a limited number of
sentries for detecting and reacting to the change of the
environment, which reduces the robustness of the
whole system. Designing a particle that is capable of
working as a sentry to monitor the environment will
also increase the complexity of the entire system and
make it hard to implement the modified PSO in a
distributed environment.

Inspired from the multi-population Evolutionary
Algorithm approaches, Blackwell[12] proposed a
multi-swarm PSO that maintains multiple particle
groups that mutually repels each other to prevent all
particles from converging at the same optimum. The
multiple particle group approach is adaptive in a highly
complex multimodal dynamic environment where
multiple peeks exist. However, this adaptive is
generated by largely increasing the particle number in
the algorithm, which eventually increases the
computational complex of the algorithm. It is
necessary to find a new method for particles to renew
their memory without any centralized control and to
maintain simplicity of each particle.

4. Distributed Adaptive PSO Approach

In this research, we propose a new modified PSO,
the distributed adaptive PSO approach (DAPSO). In
DAPSO, there is no specially designed particle to
monitor the change of the environment and there is no
additional fitness evaluation computing to enable the
particle to adapt to the changed environment. Like the
traditional PSO, each particle uses the Eq (1) to
determine its next velocity. The only difference is each
particle will compare the fitness value of its current
location with that of its previous location. If the current
fitness value doesn’t have any improvement compare
to the previous value, the particle will use Eq.(4) for
the fitness value update. Eq.(4) is slightly different
compare to the traditional fitness value update function
in Eq.(3).

⎩
⎨
⎧

+
=+

)1(
*)(

)1(
tX

TtP
tP

i

i
i

TtPtXf
TtPtXf

ii

ii

*)())1((
*)())1((

>+
≤+ (4)

In Eq.(4), a new notion, the evaporation constant T,

is introduced. T has a value between 0 and 1. The
personal fitness value that is stored in each particle’s
memory and the global fitness value of the particle

swarm will gradually evaporate (decrease) at the rate
of the evaporation constant T over time.

Once the particle continuously fails for improving
its current fitness value by using its previous searching
experience, the particle’s personal best fitness value as
well as the global best fitness value will gradually
decrease. Eventually, the personal and global best
fitness value will be lower than the fitness value of the
particle’s current location and the best fitness value
will be replaced by the particle’s current fitness value.
Although all particles have the same evaporation
constant T, each particle’s updating frequency may not
be the same. The updating frequency depends on the
particle’s previous personal best fitness value f(P) and
the current fitness value f(X) that the particle acquired.
The particle will update its best fitness value more
frequently by using the current fitness value when the
f(P) is lower and the f(X) is higher. However, when
the f(P) is higher and the f(X) is lower in a changing
environment, it indicates the particle’s current location
is far away from the current optimal solution compared
to the distance between the optimal solution and the
best fitness value’s position stored in the particle’s
memory. Usually the new environment (after change)
is closely related to the previous environment from
which it evolutes. It would be beneficial to use the
knowledge/experience about the previous search space
to help searching for the new optimal. In this situation,
the particle will keep the best fitness value in its
memory until the best fitness value becomes obsolete.
The fitness value update equation enables each particle
to self-adapt to the changing environment. This
mechanism is similar to the human society’s
knowledge/experience learning and updating. Human
obtains knowledge through personal experience and
social experience. When human can not improve
his/her problem solving capability by following the
experience and knowledge he or she early acquired, he
or she may gradually reduce the weight of the
knowledge in his/her problem solving practice and
gradually alter the knowledge with the new knowledge
or experience obtained from practice.

5. Experimental Implementation
5.1. Environmental Simulation

The simulated dynamic environment can be
constructed by using the Test Function Generator,
DF1, proposed by Morrison and De Jong.[13] The
generator is capable of generating a given number of
peaks (optimal solutions) in a given number of
dimensions. For a two dimensional problem, the static
evaluation function in DF1 is defined as following:

])()(*[),(22
iiii yYxXRHMAXYXf −+−−= (i=1,...N) (5)

where N denotes the number of peaks in the
environment. The (xi, yi) represents each cone’s
location. Ri and Hi represent the cone’s height and
slope.

Different movement functions generate different
types of dynamic changing environments. In this
research, the environment changing rate is controlled
through the following logic function [13] :

)1(** 11 −− −= iii YYAY (6)

where A is a constant and Yi is the value at the
iteration. The Y value produced on each iteration will
be used to control the changing step sizes of the
dynamic environment. In this research, the dynamic
environment is simulated by the movement of the
cone’s location (xi, yi). The Y value represents the cone
location’s moving velocity.

In the real applications, the evaluated fitness value
can not always be calculated in precision. Most of the
time, the fitness value will be polluted by some degree
of noise. To simulate this kind of noise pollution in the
fitness evaluation of the dynamic environment, we
generate the noise polluted fitness value with the
following approach. At each iteration, the fitness value
f(x) can only be obtained in the form of fn(x), where
fn(x) is the approximation of f(x) and contains a small
amount of noise n. The function can be represented
as[14]:

),1(*)()(η+= xfxf n),0(~ 2ση N (7)

where η is a Gaussian distributed random variable
with zero mean and variance 2σ . Therefore, at each
time, the particle will get a fn(x) evaluation value
instead of f(x).

5.2. Experiment Setup

To evaluate the efficiency of the DAPSO algorithm
in tracking the movement of the optimum in a dynamic
environment, the performance of the DAPSO
algorithm and the three different modified PSO
algorithms are compared over the dynamic
environment generated by using DF1. These four PSO
algorithms include DAPSO, standard PSO, APSO[11]
and PSO with constant memory reset. [10] These PSO
models share the same standard PSO configuration and
are tested in the same dynamical environment. Twenty
particles are randomly distributed in a two dimensional
environment with ±100 width in each dimension. All

of these four PSO algorithms use Eq.(1) as their
velocity update mechanism. In Eq.(1), c1 and c2 are set
to 2.05 and Vmax is set to 0.03*dimension size. [10]
The value of w is set to 0.72. [7] The algorithms are
implemented with Matlab 6.5® and run on a 3.0G HZ
CPU and 2.0G memory Windows XP platform.

The first implementation is the proposed DAPSO
algorithm. In this implementation, particles use Eq.(4)
to update their best fitness value. The evaporation
constant Tp for the personal best fitness value and the
constant Tg for the global best fitness value are set as
exp(-0.85) and exp(-3/particles number). The detail of
discovering the values of Tp and Tg is discussed in.
[15]

The second implementation is the PSO with
constant memory resetting model. In this modified
PSO algorithm, all particles will automatically reset the
personal best fitness value and location vector and
replace them with the particle’s current fitness value
and location vector in a pre-set frequency. In this
experiment, we set the reset frequency as 15 iterations.

In the implementation of the APSO algorithm, at
every iteration, a randomly chosen particle is
automatically elected as the “sentry”. This “sentry”
particle will not update its moving speed and location
as other particles. Instead, it will re-evaluate the fitness
value of its previous location. If the value changed, the
“sentry” will alarm all other 19 particles and force each
particle to replace the personal best fitness value and
location vector with the particle’s current fitness value
and location vector. As we discussed in the previous
session, the sentry may be triggered by the noise
polluted fitness value and it will cause all particles to
frequently reset the memory even though the
environment doesn’t change. In this implementation, a
noise threshold is introduced. The sentry will alarm
other particles to reset the memory only when the
difference between the current fitness value and the
previous fitness value is larger than the noise
threshold. Although it takes extra time for the sentry to
monitor the change of the dynamic environment, the
reset memory frequency in APSO more accurately
indicates the change of the dynamic environment than
the PSO with constantly reset memory model.

The last implementation in the experiment is the
standard PSO algorithm, which is used as the reference
for the three modified PSO implementation. The
difference of the standard PSO from the traditional
PSO is the standard PSO uses different parameters to
make particles that can quickly converge to the optimal
solution.

5.3 Measurement
The ability for the algorithm to track optimum in

the dynamic environment is measured by the distance
between the particle with the best fitness value and the
cone with the highest peak at each iteration. The
distance value shows the tracking ability of algorithm
in the entire searching procedure. If the algorithm can
keep at least one particle located in a short distance
from the optimal solution at anytime, regardless of the
solution’s movement, this distance value will be kept
in low value in the whole searching period. In this
research, the iterations for searching optimum are set
as 200. Each algorithm implementation will run 100
times, and the distance value of every iteration is the
average value over 100 runs.

6. Experiment Results

The performances of the four algorithms in tracking
non-stationary optimal solution are shown in Fig 1.
Figure 1 displays the shortest distance values between
the optimal solution and the particles controlled by
each algorithm from iteration 10 to iteration 200. The
smaller the distance value, the better the algorithm’s
solution in the dynamic environment. At the initial
stage, particles are randomly deployed in the
environment and the distance between the particle and
the optimal solution are usually high. For easy
displaying the change pattern of the distance value in
the high iteration stage, the distance value for iteration
1 to iteration 10 are not displayed in Fig 1.

As shown in Fig 1, compared to the other three
algorithms, DAPSO performs efficiently in the
dynamically changing environment. Although the
optimal solution is continually changing in the entire
searching period, the DAPSO algorithm can maintain
the lowest distance (below 0.5) between the best
fitness value particle and the optimal solution.

The APSO algorithm is the second best efficient
dynamic optimization tracking algorithm in the
experiment. The APSO algorithm implementation can
maintain the shortest distance from the optimal
solution between 0.5 and 1.

The PSO with constant memory reset model
implementation generates a saw shape curve of the
distance between the best solution of algorithm and the
optimal solution. As we indicated in Sect 2, frequently
resetting the particle’s memory will result in losing the
tracking of the optimal solution and it cost the
algorithm several additional iterations to re-discover
the new optimum in the environment. On the other
hand, low frequency resetting may cause the algorithm
to be trapped in an outdated optimum location until the
memory resetting start.

The distance values for the standard PSO model are
too high to be displayed in the same figure with the
other three modified PSO distance values. In Fig 1, we
use the distance’s log value to represent the changing
pattern of shortest distance from particles to the
optimal solution. As shown in Fig 1, the standard PSO
algorithm failed to track the movement of the optimal
solution in the dynamically changing environment.

Dynamic Tracking Performance Comparision

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

Iterations

D
is

ta
nc

e

DAPSO APSO Reset PSO (RPSO) Taditional PSO(TPSO) (log Value)

TPSO

RPSO

APSO

DAPSO

Fig 1, Performance comparison of DAPSO,
PSO with constant memory reset, APSO and
traditional PSO.

The quantitative comparison of the tracking
performances between different PSO models is shown
in Table 1. The summary of the distance values of each
PSO model during the whole searching procedure are
listed in the table. DAPSO has the lowest distance
summary value that indicates the DAPSO can maintain
the shortest distance between the particle and the
optimal solution. Therefore, the DAPSO has the best
performance in continuously tracking the movement of
the optimal solution in a dynamically changing
environment.

Table 1. The Summary of the Distance Value

between the Optimal Solution and the Particle that has
the Highest Fitness Evaluation Value of all Iterations

Algorithms Summary of distance
DAPSO 90.99
APSO 217.69

Traditional PSO 8818
PSO with constantly memory reset 284.48

7. Discussion and Conclusion

Most papers reporting applications of the
optimization algorithms only discuss the scenario in
the static environment. The performance evaluation of
various approaches is mainly based on how fast an
approach can find the optimal point in the benchmark
problems. It has been proven that PSO is very effective

in applications with static environment. However, the
real world is rarely static, and a frequently changing
solution space may cause the optimal solutions
changing over time. The optimal solution found at time
T1 may no longer valid at time T2. When the problem
space is dynamically changing, the goal of
optimization is not only to acquire the optimal solution
but also to track the solution’s trajectory in the whole
searching procedure as closely as possible. The
traditional PSO has difficulty in tracking the non-
stationary solutions. The reason is that PSO lacks a
mechanism to update each particle’s knowledge
obtained from the environment. That will induce a bias
toward searching the region that once held the
optimum; however, this region may not contain the
most recent goal.

In this paper, we present a new approach,
DAPSO, a modified PSO, for tracking the optimization
solution in a dynamically changing environment.
Unlike other adaptive PSO algorithms for the
dynamical environment, which needs one or more
special designed “sentry” particles to detect the change
of the environment and to control other particles’
action, each particle in DAPSO individually updates its
knowledge based on the local environment status that
the particle perceived. Furthermore, all particles in the
DAPSO system are homogenous.

In DAPSO, each particle adaptively updates its
memory based on the performance results stored in its
memory and the local environment. If its performance
doesn’t improve when the particle uses the previous
searching knowledge stored in its memory, the particle
will gradually reduce the impact of the stored
knowledge on its decision for the next searching
direction and speed. If the particle finds the newest and
better fitness value, the value and location vector will
be used to replace the outdated knowledge that is
stored in the particle’s memory. The updating
frequency of the particle’s memory is determined by
the individual particle’s knowledge evaporation rate
and the current fitness value that the particle perceived
from the point it located. Each particle in the system
may update its memory in different generations. Thus,
each particle does not need to know the results from
other particles of the population until a global best is
found. DAPSO can be easily implemented in a
distributed computing environment because the
centralized control is not required in DAPSO.

Our simulation experiment results indicate that
DAPSO can more efficiently track the movement of an
optimal solution in a dynamically changing
environment, than other modified PSO models.
Because each particle updates its memory only based
on its perception and its knowledge evaporation rate,

this DAPSO algorithm can avoid losing tracking the
optimal solution as happened in other modified PSO
approaches that are based on resetting the memory
periodically.

Acknowledgments

Prepared by Oak Ridge National Laboratory, P.O.
Box 2008, Oak Ridge, Tennessee 37831-6285,
managed by UT-Battelle, LLC, for the U.S.
Department of Energy under contract DE-AC05-
00OR22725.

References
[1] R. Eberhart and J. Kennedy, "A new optimizer

using particle swarm theory," Proceedings of the
Sixth International Symposium on Micro Machine
and Human Science, pp. 39-43, Nagoya, Japan,
1995.

[2] Cruz, Jr., G. Chen, D. Li, and X. Wang, "Particle
Swarm Optimization for resource allocation in
UAV cooperative control," AIAA Guidance,
Navigation, and Control Conference, pp. 2549-
2559, Providence, RI, United States, August, 2004.

[3] X. Cui and T. E. Potok, "Document Clustering
Analysis Based on Hybrid PSO+K-means
Algorithm," Journal of Computer Sciences, Special
Issue, pp. 27-33, June, 2005.

[4] J. Y. Jeon and M. Okuma, "Acoustic radiation
optimization using the particle swarm optimization
algorithm," JSME International Journal, Series C:
Mechanical Systems, Machine Elements and
Manufacturing, vol. 47, pp. 560-567, 2004.

[5] B. A. Kadrovach and G. B. Lamont, "A particle
swarm model for swarm-based networked sensor
systems," Proceedings of the 2002 ACM
Symposium on Applied Computing, pp. 918-924 ,
Madrid, Spain, March 2002.

[6] D. W. van der Merwe and A. P. Engelbrecht, "Data
clustering using particle swarm optimization,"
Proceedings of the 2003 Congress on Evolutionary
Computation, Canberra, pp. 215-220, ACT,
Australia, December 2003.

[7] M. Clerc and J. Kennedy, "The particle swarm-
explosion, stability, and convergence in a
multidimensional complex space," IEEE
Transactions on Evolutionary Computation, vol. 6,
pp. 58-73, 2002.

[8] A. Carlisle and G. Dozier, "Adapting particle
swarm optimization to dynamic environments,"
Proceedings of the International Conference on
Artificial Intelligence, pp. 429-433, Las Vegas,
NV, USA, 2000.

[9] M. Clerc, "The swarm and the queen: towards a
deterministic and adaptive particle swarm
optimization," Proceedings of the 1999 Congress
on Evolutionary Computation, pp. 1951-1957,
Washington, DC, USA, 1999.

[10] R. C. Eberhart and S. Yuhui, "Tracking and
optimizing dynamic systems with particle
swarms," Proceedings of the 2001 Congress on
Evolutionary Computation, pp94-100, Seoul, South
Korea, 2001.

[11] A. Carlisle and G. Dozler, "Tracking changing
extrema with adaptive particle swarm optimizer,"
Proceedings of the 2002 Soft Computing,
Multimedia Biomedicine, Image Processing and
Financial Engineering, pp. 265-270, Orlando, FL,
USA, 2002.

[12] T. Blackwell and J. Branke, "Multi-swarm
optimization in dynamic environments,"
Proceedings of the 2004 Applications of
Evolutionary Computing Workshops, pp. 489-500,
Coimbra, Portugal, 2004.

[13] R. W. Morrison and K. A. De Jong, "A test
problem generator for non-stationary
environments," Proceedings of the 1999 Congress
on Evolutionary Computation, pp. 2047-2053,
Washington, DC, USA, 1999.

[14] K. E. Parsopoulos and M. N. Vrahatis, "Recent
approaches to global optimization problems
through particle swarm optimization," Natural
Computing, vol. 1, pp. 235-306, 2002.

[15] X. Cui, C. T. Hardin, R. K. Ragade, T. E. Potok,
and A. S. Elmaghraby, "Tracking non-stationary
optimal solution by particle swarm optimizer,"
Proceedings. 6th International Conference on
Software Engineering, Artificial Intelligence,
Networking and Parallel/ Distributed Computing,
pp. 23-25, Towson, MD, USA, May 2005.

