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Abstract 
 

To better understand insurgent activities and 
asymmetric warfare, a social adaptive model for 
modeling multiple insurgent groups attacking 
multiple military and civilian targets is proposed 
and investigated. This report presents a pilot 
study using the particle swarm modeling, a widely 
used non-linear optimal tool, to model the 
emergence of insurgency campaign. The objective 
of this research is to apply the particle swarm 
metaphor as a model of insurgent social 
adaptation for the dynamically changing 
environment and to provide insight and 
understanding of insurgency warfare. Our results 
show that unified leadership, strategic planning, 
and effective communication between insurgent 
groups are not the necessary requirements for 
insurgents to efficiently attain their objectives. 
 
1. Introduction 

Insurgency warfare is dynamic, adaptive and non-
linear warfare. Studies of insurgency warfare can be 
traced back to the publications of Chinese strategist 
Sun Tzu in 400BC[1].  In the last century, relatively 
modern studies about insurgency warfare have 
provided general insights and practical guidance into 
the perspective of insurgents and counter-insurgents [2, 
3]. The U.S. military, particularly the Army, has a long 
history of counter insurgent activity. Until the past 
decade though, this has not been an area of focus for 
the U.S. military. The events happened in Somalia, 
Iraq, and Afghanistan make the military re-assess the 
21st century insurgency and revisit its strategy, 
operational concepts, organization, and doctrine. The 
investigation of insurgency in the U.S. has reached it’s 
height since the end of the Cold War. But insurgency 

remains a significant challenge for the U.S. and other 
governments because of its two dominant 
characteristics: protraction and ambiguity. One 
possible solution is to represent insurgency and counter 
insurgency (COIN) warfare as a complex social 
adaptive system (CAS)[4, 5]. CAS is a non-linear 
dynamical system of many interacting agents 
continuously adapting to a changing environment. 
Agent Based Model and Simulation (ABM) provides 
an architecture and platform for the implementation of 
relatively autonomous agents. Social processes can be 
simulated by using ABM in the computer. Agents 
represent people or groups of people. Agent interaction 
represents the process of social interaction. The 
advantage of using ABM simulate complex social 
system is in some circumstances, ABM can be used to 
carry out experiments on artificial social systems that 
would be quite impossible or unethical to perform on 
human populations. This greatly contributed to the 
establishment of the agent-based CAS simulation. 
Numerous empirical-based multi-agent simulators[6] 
have been constructed over recent years to model 
complex dynamic systems in numerous disciplines. 
Currently, most ongoing work in the insurgency 
warfare research area is typically concerned with 
enhancing existing military capabilities for COIN 
rather than building scientific understanding of the 
insurgency. In terms of modeling, there does not 
appear to be any mature or widely used methodology 
addressing insurgency warfare. 

In this paper, we present a modified particle 
swarm model to simulate the insurgent groups’ social 
interaction and adaptation in a complex insurgency 
warfare system. Our simulation results indicate that 
even without a centrally controlled leadership to 
coordinate the action of each insurgent member, the 
particle swarm modeled insurgent swarm can emerge a 
highly coordinated behavior that optimizes their 
attacking results. This paper is organized as follows: 

Fifth International Conference on Software Engineering Research, Management and Applications

0-7695-2867-8/07 $25.00 © 2007 IEEE
DOI 10.1109/SERA.2007.47

177



Section 2 incorporates an introduction to the canonical 
particle swarm optimization algorithm. Section 3 
provides related work on the agent based insurgency 
warfare simulation; Section 4 describes the particle 
swarm social adaptive model for our agent based 
insurgency warfare simulation. Section 5 contains the 
experimental setups and results. Result discussion and 
conclusion are presented in Section 6.  
 
2. Particle Swarm Optimization Algorithm 

Particle Swarm Optimization (PSO) is an 
important part of swarm intelligence. It was originally 
developed by Eberhart and Kennedy in 1995[7], 
inspired by the social behavior of the bird flock. In the 
PSO algorithm, birds in a flock are symbolically 
represented as particles. These particles can be 
considered as simple agent swarm “flying” through a 
problem space. A problem space in PSO may have as 
many dimensions as needed to model the real problem 
space. Each particle has a location X-vector and a 
velocity V-vector. A particle’s location in the multi-
dimensional problem space represents one solution for 
the problem. When a particle moves to a new location, 
a different problem solution is generated. This solution 
is evaluated by a fitness function that provides a 
quantitative fitness value of the solution’s utility.  

Each particle also has memory to record the “best 
location” that it has experienced in the problem space 
so far, and the knowledge of the best location found so 
far by all the particles of the swarm. The “best 
location” means the problem solution generated on this 
location has the best fitness value. Particles of a swarm 
communicate the best location with each other and 
adjust their own location and velocity based on this 
best location. It is the particle’s personal experience 
combined with its peers’ experience that influences the 
movement of each particle through a problem space. 
For every generation, the particle’s new location is 
computed by adding the particle’s current velocity V-
vector to its location X-vector. Mathematically, given a 
multi-dimensional problem space, the ith particle 
changes its velocity and location according to the 
following equations[8, 9]:  
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where Vid indicates the speed of the particle moving 
along the dimensions in a problem space; xid is the 
particle’s current location; pid (personal best) is the 
location of the particle experienced its personal best 
fitness value; pgd (global best) is the location that the 
particle experienced the highest best fitness value in 

the entire population; d is the number of dimensions of 
the problem space; rand1, and rand2 are random values 
in the range of (0,1). c1 and c2 are two positive 
acceleration constants; w is the constriction 
coefficient[9] and is computed according to Equation 
2a: 
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Equation 1a requires each particle to record its 

current coordinate xid, its velocity Vid, its personal best 
fitness value location vector Pid, and the whole 
population’s best fitness value location vector Pgd. The 
best fitness value Xi is updated at each generation 
based on Equation 3, where the symbol f() denotes the 
fitness function; Xi () denotes the best fitness values; 
and t denotes the generation step.  
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The Pid, Pgd and their coordinate fitness values 

f(Pid) and f(Pgd) can be considered as each individual 
particle’s experience or knowledge and Equation 3 is 
the particle’s knowledge updating and learning 
mechanism. In PSO, the knowledge of each particle 
will not be updated until the particle encounters a new 
vector location with a higher fitness value than the 
currently stored value in its memory.  

 
3. Related Work 

A relevant multi-agent based model has been built 
and studied by Epstein[5]. Epstein reported a simple 
cellular automata (CA) model for simulating civil 
violence. In this idealized spatial model, a central 
authority seeks to use police officers to arrest (remove) 
actively insurgency from the society for a specified jail 
term to suppress a decentralized rebellion. This model 
contains three types of agents: the general citizen, the 
insurgency, and the police officer. All agents possess 
local vision and can randomly move to a new 
unoccupied site within its limited vision over a two-
dimensional lattice. By using this simple CA 
simulation, Epstein showed how the complex 
dynamics resulting from simple assumptions can 
generate empirically interesting macroscopic 
regularities that are difficult to analyze using standard 
modeling approaches. The MANA model [6], an 
extension of Epstein’s model, introduced specific 
movement strategies that are aimed at correcting the 

178



purely random movement of agents. However, the 
agent interaction and cognition in both simulations are 
too rigid and simplistic to be psychologically plausible. 
The behavior of the software agent is strictly rule-
based: If a particular condition appears in the agent's 
environment, the agent can only respond with a 
particular preprogrammed action. There is no direct 
communication between agents. Each agent does not 
have any capability of learning from its previous 
experience. This is clearly a very unrealistic 
representation of the social world.  

A new insurgency warfare model that can provide 
a better understanding of the insurgent communication 
and learning activity is needed. The individual particles 
in the PSO model are capable of both individual 
learning and social learning through the interactions 
between particles. We propose a particle swarm social 
adaptive model to simulate insurgency warfare. This 
report presents a pilot study of an integration of 
particle swarm social knowledge adaptation and multi-
agent approaches for modeling the collaboration of 
insurgent groups while attacking multiple military and 
civilian targets.  

 
4. Particle Swarm Social Adaptive Model for 
Insurgency Warfare Simulation 

In this agent based insurgency warfare simulation 
study, we extend the use of PSO on human social 
model to simulate the interaction behavior between 
insurgent agents. Although the PSO algorithm has been 
widely used as a function optimization tool since it was 
first published in 1995, the initial research target of the 
PSO was to develop a human social model and the 
algorithm itself represents an abstract model of human 
knowledge social adaptation behavior[10, 11].  
Researchers from Europe have applied the PSO model 
to the simulation of the social behavior in animals [12, 
13] and the strategic adaptation in organizations [14]. 
The research of applying PSO models to the evolution 
of human society behavior and social cognitive 
modeling is still unavailable in scientific publications. 
In this study, we use PSO to model the social adaptive 
behavior in insurgency warfare. In the following 
section, we will present a detailed description of each 
component of the PSO model in our agent based 
insurgency warfare simulation.  
4.1 Simulation Model 

The simulation model can be either highly 
idealized or detail descriptive. The most fundamental 
decision an ABM researcher makes is how detailed 
their model will be. Most ABMs are intimately tied to 
a specific domain because they include a considerable 
amount of detail derived from real world datasets and 

their goal is to answer a specific real-world question. 
The downside of detailed models is that they may 
predict too many possible outcomes if they have many 
parameters that are insufficiently constrained. Some 
other researchers choose to create highly idealized 
models that distill a collective phenomenon to its 
functional essence. Researchers pursuing idealized 
models are typically motivated to describe domain-
general mechanisms with a wide sphere of application. 
Idealized models have widespread application to many 
real-world domains, and generate comprehensible 
explanatory accounts by focusing on only a few crucial 
causal elements. However, the highly idealized model 
might not map onto any actual case study, and they can 
oversimplify to the point of leaving out crucial details. 
The strategy for designing an insurgent simulation 
starts firstly from a very simple model, which is easy 
to specify and implement. When we understand this 
simple model and its dynamics, we will extend the 
model to encompass more features and more 
complexity. 
4.2 Agents 

In an agent based simulation, the most important 
object is the “agent”. Agents can represent people or 
groups of people. Agent interaction represents 
processes of social interaction. Two types of agents are 
specified in this particle swarm social adaptive model – 
the insurgent and the authority. There can be multiple 
insurgent groups. The insurgent agent can be affiliated 
with different groups. All agents behave, act, and react 
in accordance with the environment they have 
detected.  

4.3 Simulation Scenario 
Different groups of insurgent agents seek efficient 

attacking strategies to strike the authority. The 
insurgent agents do not have any prior-knowledge 
about the strategies. The objective of each insurgent 
agent is to find out the action strategy that can generate 
greatest profit for insurgent group as well as highest 
damage to the authority. In contrast, the authority seeks 
to reduce the insurgent profits of some particular 
strategies when the strategies are adopted by the 
insurgent agents. The insurgent agent that attacks the 
authority will receive a feedback on the results of the 
current and historic attack strategy. The strategies’ 
profit randomly changed in each time step. After a 
strategy is adopted by many insurgents, the profit of 
this strategy each insurgent agent gained will gradually 
reduce. The more insurgent agents adopt the strategy, 
the lower the profit each insurgent agent can gain.  

4.4 Insurgent Information Exchange Rule 
In the real world, the information exchange 

between insurgent groups is not as efficient as that 
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within the same insurgent group. Because of the reason 
of competition, some insurgent group may not want to 
share their newest attacking strategy to other insurgent 
group. The security reason also force insurgent groups 
to avoid too many inter-group communications within 
insurgent groups. Other insurgent groups have to 
acquire the intelligence information through other 
method. For instance, they can learn other groups’ new 
attacking strategy through News media, Internet and 
other public broadcast method. The newest and the 
most efficient strategy learned from other groups is 
usually non-accurate or delayed. In this simulation, 
insurgents belonging to the same group can exchange 
information without any restriction. But the 
information exchanged between different groups will 
be delayed for a pre-defined number of time-steps and 
some noise will be added to the value of the 
information to reduce the information’s accuracy.   

4.5 Insurgent Agent Strategic Searching Rule  
The PSO algorithm is used to control the insurgent 

strategic searching in the virtual strategy space. Under 
the particle swarm metaphor, each insurgent particle is 
assumed to move through an attack strategic virtual 
searching space to search for a functional optimum. 
Each insurgent particle has two associated properties, a 
current position x in the virtual strategy space and a 
velocity v. Each particle has a memory of its best 
strategy location (pbest) where the strategy will cause a 
biggest lose to the authority when it is adopt by the 
insurgent agent. Each particle also knows the global 
best location (gbest) found by all other neighbor 
particles that belong to the same insurgent group. The 
gbest of different groups will be exchanged between 
different groups. However, these exchanges are always 
noisy, delayed and some time even in error. When the 
delayed and noisy gbest value from other groups 
arrives, the gbest value from other groups will replace 
the gbest value within the group, if the gbest value 
from other groups is greater than the current gbest 
value. At each step of the algorithm, an insurgent 
particle moves from its current position to a new 
location based on a velocity vector. The velocity vector 
is influenced by the particle’s previous velocity, its 
current location, and its pbest and gbest value. 
Therefore, at each step, the size and direction of each 
particle’s movement is a function of its own history 
(experience) and the social influence of its peers.  

4.6 Profitable Strategy Moving Rule 
The attacking strategies that can bring profit to 

insurgent are dynamically move in the virtual strategy 
space. The movement of the profitable strategies 
includes two moving rules. (1) Randomly wandering. 
The authority agent will randomly change its security 

and protection strategy and eventually make the 
insurgent’s profitable strategy randomly move. (2) 
Adaptive changing. When one attacking strategy is 
highly profitable, this strategy will be gradually 
adopted by all insurgent agents. However, when the 
number of agents that adopt the same attacking 
strategy is increased, the authority will notice the 
phenomena and intentionally decrease the profit that 
the insurgent agents can earn from this strategy.  

4.7 Insurgent Agent Memory Update Rule 
Based on the strategy moving rule, profitable 

strategy can randomly move in the environment and 
the fitness value of each strategy in the environment 
may change over time following insurgent attacks. The 
strategy with the highest fitness value found by a 
specific insurgent particle will not have the highest 
fitness value after the strategy being adopted by 
insurgent agents for several time-steps. The dynamic 
change of the highest strategy fitness value location 
requires the particle to renew its memory whenever the 
environmental status does not match its memorized 
knowledge. However, the traditional PSO lacks an 
update mechanism to renew the particles’ memory 
when the environment changes. If insurgent particle 
uses the traditional PSO to direct its attack strategy 
searching, the PSO searching algorithm can cause the 
particle to continue using the obsolete knowledge to 
direct its search, which inhibits the particle from 
following the path of the current optimal solution. As a 
result, the particle can be easily trapped in the region of 
the former optimal solution. Therefore, a memory 
update mechanism[15] is used to renew insurgent 
particles’ memory when it is necessary. In this 
mechanism, a new notion, an evaporation constant T, is 
introduced. T has a value between 0 and 1. The 
personal fitness value and global fitness value stored in 
each particle’s memory will gradually evaporate 
(decrease) at the rate of the evaporation constant over 
time.  The update process is formulated as:  
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In Equation 4, after the value of fitness evaporates 
for a period, the fitness value, X-fitness, of the current 
location may be higher than the evaporated fitness 
values and will replace the old fitness value. Although 
all particles have the same evaporation constant T, 
each particle’s updating frequency may not be same. 
Depending on the particle’s current stored best fitness 
value f(P) and the current fitness value f(X) the particle 
acquired, the particle will update its best fitness value 
more frequently by using its current fitness value when 
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the f(P) is lower and the f(X) is higher. However, when 
the f(P) is higher and the f(X) is lower in a changing 
environment indicates the particle’s current location is 
farther away from the current optimal solution 
compared to the distance between the optimal solution 
and the best fitness value’s position stored in the 
particle’s memory. In this situation, the best fitness 
value will be kept in the particle’s memory till the best 
fitness value has become too obsolete after several 
generations. The fitness value update equation enables 
each particle to self-adapt to the changing 
environment.  

 
5. Experimental Settings and Results 

Simulations are carried out in the Netlogo[16] 
agent modeling environment. The insurgent particles 
use Equation 4 to update their best fitness value. The 
evaporation constant T is set as exp (-1). There are 300 
insurgent particles randomly distributed in an 
environment that consists of a 100x100 rectangular 
grid. An example of the initial environment is shown in 
Fig. 1. In the initial environment, all 300 insurgents are 
equally belonging to twenty insurgent groups. Eeach 
group has 15 insurgent members. Each dot represents 
an insurgent and different colors are used to help to 
identify different insurgent groups.  

To simulate the movement of the strategies and the 
dynamic change of the profit (fitness value) of the 
strategies, a test function generator, DF1, proposed by 
Morrison and De Jong[17], is used to construct the 
dynamic environment. The generator is capable of 
generating a given number of peaks (optimal solutions) 
in a given number of dimensions. For a two 
dimensional problem, the static evaluation function in 
DF1 is defined as following:  
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where N denotes the number of peaks in the 
environment. The (xi, yi) represents each cone’s 
location. Ri and Hi represent the cone’s height and 
slope. 

Different movement functions generate different 
types of dynamic changing environments. In this 
research, the environment changing rate is controlled 
through the following logic function[17] :  
 

)1(** 11 −− −= iii YYAY      (6) 
 

where A is a constant and Yi is the value at the 
iteration. The Y value produced on each iteration will 
be used to control the changing step sizes of the 

dynamic environment. In this research, the dynamic 
environment is simulated by the movement of the 
cone’s location (xi, yi). The Y value represents the 
moving velocity of the cone location.  

The two dimensional visual result from previous 
dynamic environment simulation model is shown in 
figure 1. Eight white circuits represent different 
insurgent attacking strategies and the fitness values of 
the strategies. The brighter the white color of the 
circuit, the higher the fitness value or profit an 
insurgent agent can earn. 

  

 
Fig 1: The initial environment 

The movement of each insurgent particle follows 
Equation 2a and Equation 2b, in which c1 and c2 are set 
to 1.49 and Vmax is set to 5. The w value is set to 0.72. 
The delayed time-steps for information exchange 
between insurgent groups is 20 time-steps. There is a 
20 percent possibility that the information, including 
the location of the best fitness value and the fitness 
value itself, is incorrect. Different numbers of 
insurgent groups are simulated in this study. To 
evaluate the performance of the insurgent groups in the 
simulation, average loss and total loss caused by 
insurgent attacks at each time step are recorded 
separately.  The simulation results are presented in Fig. 
2 - 6. The visual result of insurgent particles with 
updated memory rule (Fig. 2a) is compared with these 
without updated memory rule (Fig. 2b) and the results 
are shown in Fig. 3. 

 

  
         (a)     (b) 

Fig 2: The visual results of insurgent particles 
(a) with update memory rule, (b) without update 

memory rule 
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Fig 3: The average loss caused by insurgents 

with memory update rule and without memory 
update rule 

 

Fig. 3 illustrates that, in the dynamic environment, 
the insurgent group modeled with PSO model without 
the memory update rule fails to track the randomly 
moving optimal solution. As shown in Fig. 2b, all 
particles are trapped at the center of the environment. 
However, as shown in Fig. 2a, the insurgent particles 
that use the memory update rule can, in real time, track 
the dynamically moving target and surround 
themselves at the vicinity of the targets. This can help 
insurgent groups generate higher total loss on the 
targets.  

 

 
(a) 

 
(b)  

 
(c) 

Fig 4. The results of insurgent particles for (a) one 
group, 300 insurgents, (b) two groups, 150 insurgents per 

group, (c) twenty groups, 15 insurgents per group 
  

 
(a) 

 
(b) 

 
 (c) 

Fig 5. Total gained benefit at each time-step for (a) 
one group, 300 insurgents, (b) two groups, 150 insurgents 

per group, (c) twenty groups, 15 insurgents per 
group 

 

 
Fig 6. The average benefit earned by insurgents 

with different group numbers 
 

To investigate whether lacking unified leadership, 
planning, and effective communication among 
insurgent groups can inhibit or facilitate insurgents 
obtaining their goals, the performance of the insurgent 
particles for one insurgent group with 300 insurgents 
(Fig. 4a), two insurgent groups with 150 insurgents in 
each group   (Fig. 4b), and twenty insurgent groups 
with 15 insurgent in each group (Fig. 4c) are 
compared. The results are shown in Fig. 5. The average 
loss caused by insurgents with different group numbers 
is shown in Fig. 6. With time increases, the average 
loss increases in all three situations. However, as 
shown in Fig. 6, the simulation of twenty insurgent 
groups can gain more total benefit and cause more 
damage to the authority than both the one group and 
the two groups do, although there is no unified 
leadership, planning or effective communication 
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among these twenty insurgent groups in the simulation 
compared to the one group insurgent simulation.  

6. Discussion and Conclusion 
In 1962, President John Kennedy advised the West 

Point graduates that they would have to deal with 
“…another type of war, new in its intensity, ancient in 
its origins—war by guerrillas, subversives, insurgents, 
assassins; war by ambush instead of by combat; by 
infiltration, instead of aggression, seeking victory by 
eroding and exhausting the enemy instead of engaging 
him....”. After more than 40 years, this kind of warfare 
is still the most significant military tactic being used 
against American forces around the world. Discerning 
how insurgent groups interacting, learning and how 
emergent behaviors emerging from aggregate 
interactions in a dynamic environment is crucial for 
understanding insurgency.  

In this paper, a modified PSO model is developed 
to simulate the complex interactions between the 
insurgent groups and targets and to analyze how an un-
organized, un-planned insurgent riot can reach their 
effect-based operation in a highly dynamic 
environment. Our primary aim is to demonstrate how 
individual insurgent violence on dominant power 
targets can produce effect based operations, which 
usually requires highly organized and professional 
planning. We construct a novel agent based simulation 
model to examine the impact of different attack 
scenarios that the insurgent groups may conduct. The 
objective of this research is not to develop a tool for 
optimizing an optimizing attack strategy that can cause 
highest loss to authority, but to apply the particle 
swarm metaphor as a model of insurgent social 
adaptation for the dynamically changing environment 
and provide an insight and scientific understanding of 
the insurgency warfare. Results from our simulation 
have shown that lack of unified leadership, planning, 
and effective communication are not the necessary 
requirements for insurgents to attain their objective.  
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