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Complex and Unusual Patterns in Data

o Weather, Hydrology and Climate
— Origin of the Lorenz Equation
— Searching for Chaos from Real Data
— Extreme Values, Anomalies and Teleconnections

Natural Disasters and Impacts

e Transportation and Sensors
— Power Laws and Nonlinear Correlations
— Patterns of Normal Behavior and Anomalies

Transportation Security and Safety




Predictive Insights on Natural
Disasters for Strategic Policy-Making

Case Study with Rainfall Extremes in South America

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY UT-BATTELLE




Excellent Team Work

Names listed in alphabetical order per category

ORNL Staff ORAU Students
Marcia Branstetter, CSMD e Chris Fuller?t
David Erickson, CSMD (Co-PI) e Shiraj Khan?
Auroop Ganguly, CSED (PI) e Gabriel Kuhn?

George Ostrouchov, CSMD (Co-Pl) e Aarthy Sabesan?

1: RAMS Intern

Consultants 2: CSED Post-Master

Tailen Hsing, Ohio State
Rick Katz, NCAR

Funding provided by SEED money funds
of the Laboratory Directed Research and
Development (LDRD) program at ORNL




Ui Netlons Divelopment Progriimg | 1.3 Disaster Losses are Increasing

UNDP Report: “Reducing Disaster Over the last quarter century, the number of reported

Risk: achallenge for development” natural disasters and their impact on human and

economic developrnent worldwide has been increasing

~ yearly. EExisting records, while less reliable before 1980,
Nat’onal a”d can be traced back to 1900. This longer time period also

GlObal Pl’Oblem shows a relentless upward movement in the number of

disasters and their human and economic impacts.?
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WHEN the 40-foot-high Kaloko dam collapsed on the Hawaiian island of Kauai last March, its reservoir released a 70-foot-high, 200-foot-wide, 1.6-million-ton wave that A\ —,
carried away 16 cars, hundreds of trees and a cluster of houses, drowning all seven occupants. At least two bodies were swept three-quarters of a mile to the ocean; four were El]r hf‘“ ﬂﬂ rk Q’uu €S

r recovered. . . .
nEver recove Op-Ed (Editorial) Article
It is tempting to dismiss Kaloko's collapse as an isolated event, but given the perilous state of the nation’s dams, it is mare ikely a harbinger. In 2005, the American Society of on Floods and Dams

Civil Engineers gave United States dams a D, a grade that is still justified two vears Jater. - N
A Decaying Civil
Infrastructures

For starters, the nation's dam stock is rapidly aging. Most dams need major repairs 25 to 50 vears after they're bult, and most United States dams are at least 25 years old;
some, like the 116-vear-old Kaloko, were bullt more than a century ago.




Science Can Provide Solutions:

7 G

Don't blame God. Better planning could make natural
disasters much less disastrous, experts say.

SCIENCE voL 310
23 December 2005

A. Risk Map / Database

W

“‘Envisions a Public Database
Like Google Earth”

‘Risk Landscape down to Zip
Code Level’

“‘Because the causes and impacts
of disasters are so broad ... we
need teams of gecphysicists who
can talk fluently with
epidemioclogists, and engineers
with psychologists”

“One thing is all but certain: Even
worse years lie ahead”

“Looking back over 2005 ... these
disasters should be taken as
‘opportunities to learn™




Science Can Provide Solutions:

VIEWPOINT B. Preventive Measures

Refocusing Disaster Aid

Joanne Linnerooth-Bayer, Reinhard Mechler, Georg Pflug

With new modeling techniques for estimating and pricing the risks of natural disasters,
the donor community is now in a position to help the poor cope with the economic
repercussmns of dlsasters by asmstlng before th@},lr happen. Such assistance is possible

“Post disaster assistance ... has
failed to meet the needs of
developing countries”

“Free from ... vagaries of post
disaster assistance”

“Transferring catastrophe risks to
global financial markets ”

‘Need ... has become more
pressing in light of climate-change
negotiations”

ransferring catastrophe risks to the

». Both donors and recipients stand
e closely coupled with preventive
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Fig. 1. Fatalities per event and direct economic losses as a share of national per capita income
over the period 1980 to 2004. Country income groups according to World Bank classification
using GNI per capita. Lower-middle and upper-middle income groups were combined.
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Progress Achieved

Publications Publicity
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Geophysical Union, Fall Meeting, San
Francisco, CA.
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Case Study Region: South America
Population GDP

A

Why South America? Precipitation Why South America?

1. Recently available 2.  Countries more easily

precipitation dataset from comparable (financial,
NOAA. .. Case study can be repeated geo-political, cultural...)

for other regions




Extreme Value Theory
The Generalized Pareto Distribution
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PDF >

¢ < 0: Bounded Tail
& =0: Light Tail

Exponential

&> 0: Heavy Tail

Polynomial

Flots: Courtesy " The Mathworks”

E=0

EXCEEDENCES OVER THRESHOLD
Prob. (X -u| X > u)

PARAMETERS ESTIMATED BY
MAXIMUM LIKELIHOOD
Scale Parameter: o
Shape Parameter: &




Extreme Value Theory
Return Level

o T-year Return Level, RL(T)

— Level that will be exceeded once in every T years
— Probability of exceeding RL(T) in any year: 1/T

240 - 700

1

)
)

U ‘+‘ %[(i\'””{:u){ = .l.] E [
u+ olog(Nn,C,.). i

RL‘\' — {

N-year Return Level
u: Threshold exceeded in a year =
n,: Observations in a year

¢ ,: Probability of an individual

observation exceeding u




A Measure of Surprise
“Surprise” caused by “Truly Unusual” Extremes

e “Design Extremes”: t-year Return Level, RL(t)

— t: Design return period
— Example: Dams designed for “50-year floods”, or 1/50 chance

e “Truly Unusual Extremes”: T-year RL, RL(T)
— T: Higher bound on anticipated return level
— Example: A 500-year flood is rare but has 1/500 chance

e Measure of “surprise”: RL(T) / RL(t)
— How surprised will one be by a 500-year event when one is
prepared for a 50-year event?

— If the “truly unusual” extremes are close to the “design extreme”,
anticipated surprise is low, and vice versa




Extreme Volatility Ratio (EVR)

A “new” measure of surprise

e “EXTREMES VOLATILITY RATIO” (EVR): RL(T) / RL(?)

— EVR = 1 = No possibility of surprise
— Higher values of EVR = Greater degree of surprise

T/t)¢,
B« |
RLi ~ 11{}5_1;{ 1)/ log(t).

p— / _,—.,.. ——
— —

Sy Sy Iy
/\

e Not so “new”:. EVR relates directly to the shape

parameter, &
¢ Much more interpretable: Easier to understand and

visualize




Extremes Volatility Index (EVI)

Normalized vulnerability measure

Extreme Volatility Index

(1940 -

2004)

e EVI =1 - (1/EVR)
EVI={1-RL(t)/RL(T)

EVI = (0, 1)
EV Index
— Normalized measure of surprise I
- B
— Non-rigorous interpretation: -:E
“Probability measure” T

St argio Clmlls

Kilorreters




Precipitation EVI Trends

Extremes Volatility Ratio Extremes Volatility Ratio

{1970 - 1989) {1885 - 2004)

EV Index

0 550 1,100, 2,200 c—zﬂﬁummr:
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Indices for Risks and Impacts
of Precipitation Extremes

e “Probability” of Surprise: Precipitation EVI
— Probability of Truly Unusual Extremes

e Potential Risk: Probability X Potential Cost
— Potential Cost ~ Population Density

e Disaster Impact: Potential Risk / Ability to
Respond

— Ability to Respond ~ GDP




Human Risk Index (HRI)

Extrsme Yoletility Indes
(IRd0 » 004}

LandScan
(ORNL)

BV Index

Human Risk Index of South America
{Data Retrieved from 1940-2004)
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Disaster Impact Index (D

Mamsn Risk Indes of South Amesics
(Dats Retrisvad fram 1040-2004)

Boulh America GOP Indes
PE40 - 2064

Disaster Impact Index
(1940 - 2004)
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Related Research on Natural
Processes and Hazards Mitigation

Hydro-Climate Processes and Impact Analyses
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Our Related Research

Geospatial-Temporal Dependence among
Hydrologic Extremes

Nonlinear “Teleconnection” in Space and Time
among Climate and Hydrological Variables

Detection of hidden nonlinear dynamical behavior
from short and noisy hydrologic time series

Online Change Detection in Space and Time from
Remotely Sensed Observations

Weather Prediction based on Remotely Sensed
Observations and Numerical Weather Models

Evaluation Metrics and Uncertainty in High-
Resolution Population Estimates




Geospatial-Temporal Dependence among
Climate/Weather Extremes

A new measure to describe
Kuhn, G., Khan, S., Ganguly, A.R., and

the relationship among |, g .ctetter (2006): Geospatial

exfremes in space- time temporal dependence among weekly

Simultaneous occurrence of precipitation extremes with applications fo
observations and climate model

100-year return levels simulations in South America, Advances

* No dependence = 10000-yr event in Water Resources (/n Review).

+ Perfect dependence = 100-yr event
Funding: LDRD/SEED (ORNL)

Correlation Tail Dependence Correlation Tail Dependence
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Rainfall Observations in South America Simulations from CCSM3 Climate Model




Nonlinear Climate-Hydrology Teleconnection

8 Amaron

Stronger correlation between
the El Nino climate index
and the tropical
hydrological cycle
obtained through new
adaptations of nonlinear
statistical tools

Funding: LDRD/SEED (ORNL)

t

[able 1. Variation in the Annual Flow of Rivers Associated With ENSO?

River Previous Studies Linear CC MNonlinear OC
Mle 25% [SON] [Eltakir, 1996) 28% [ASO] 40% M)
Amaron 10% [D7JF] [Amarasekera ef al., 1997] 1% [ATST07] 18% [A~5707]
Congo 1086 [MAM)] [Amarasckera et al, 1997] % [F"M™A7] 23% [MTJ)7]
Parand 19% [D7JF) [Amarasckera e al,, 1997) 23% [DJF) 29% [JF)
Ganges 29% [JA] [Whitaker er al., 2001] 24% [JAS] 31% [JAS])

*Linear and nonlinear CCs ane estimated using LR and KDE, respectively. Months in a quarter are given in brackets. The month preceding the seasonal
cyele 15 indicated by a negative sign following a month

Khan, S., A. R. Ganguly, 5. Bandyopadhyay, S. Saigal, D. J. Enickson, III, V. Protopopescu, and G.
Ostrouchov (2000): Nonlinear statistics reveals stronger ties between ENSO and the tropical
hvdrological cycle, Geophysical Research Letters, 33, L.24402, do1:10.1029/2006GL027941.




Online Change Detection from Remotely

Sensed Data

A new method for real-time detection
of anomalies, outliers, change and
change points in space and time

Y1 Fang, Aurcop R. Ganguly,
Nagendra Singh, Veeraraghavan
Vijayara], Neal Feierabend, David T.
Potere, "Online change detection:
Monitoring fand cover from remotely

CA ME NC B d
Y e =3 5 33 Sff:nsed data’, |odmwf, pp. 626-631,
Change Point 70 43 30 Sixth |IEEE International
Store Opening 93 76 55 Conference on Data Mining —
Groundbreaking 68 Missing Missing Workshops (ICDMW'06), 2006.
Apple Valley, CA Funding: LDRD (ORNL)
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16 Day MODIS Composites (February 18, 2000 - June 10, 2005)




Evaluation and Uncertainty Estimation of
High-Resolution Global Population Maps

= | Metrics for the evaluation of

high-resolution, global
population data

““#2 Process-based uncertainty

estimation in global
population database

Funding: LandScan (ORNL/ GIST Sponsors)
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Sabesan, A., Abercrombie, K., Ganguly,

A.R., Bhaduri, B.L., Bright, E.A., and P.
Coleman (2006): Metrics for the
comparative analysis of geospatial
datasets with applications to high-
resolution grid-based poptilation data,
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o Geodournal (/nvited: In Review).




Detection of hidden nonlinear dynamics
from short/noisy hydrologic data

A new method to isolate and identify chaos
and nonlinear dynamics from short and - . P
finite time series with noise & seasonality |.,.|| < . P
Simulated data suggests thresholds beyond which g oy L =Fmem G
currently available tools cannot detect chaos B /.
Frequency domain analysis identifies seasonality and % 05 - %
short-term nonlinear prediction tools distinguish il
noise from the dynamical sighal, if any s i b - >
Funding: USF e

5 o Arkansas River at Little Rock, AK
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Khan, S., Ganguly, A. R., and Saigal, 8. (2003): Detection and predictive modeling of chaos in finite
hydrological time series, Nonlinear Processes in Geophysics, 12: 41-53..




Weather Prediction from Remotely
Sensed Data and Numerical Models

Remote Sensors
Ground Measurements

Real-time

Source for pictures:
NOAA (Internet)

Source for picture: UCAR (internet)

Scientific |,

Database

| Numerical Weather Predictio
Model Outputs

Real-rime

.T‘

Large-Scale
Dynamics

Mean and

Propagation

|
L ]
. : :
s  Uncertainty
|
| |
L 1
L 1

[ Rainfall Forecasting System

Ganguly AR, Bras RL

(2003) Distributed Quantitative
Precipitation Forecasting Using
Information from Radar and
Numerical Weather Prediction
Models. Journal of
Hydrometeorology 4(6). 1168

Improved prediction
compared to state of
the art approaches

Funding: MIT

The rainfall forecasting problem was partitioned into component

processes in a way such that weather physics and multiple data
dictated tools could be utilized where each fit best




Knowledge discovery from wide area
sensor data for security applications

Case Study with Truck Weigh Station Sensors and Transportation Security

OAK RIDGE NATIONAL LABORATORY
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Multidisciplinary Team

Names listed in alphabetical order per category

ORNL Staff ORAU Students
e Auroop Ganguly, CSED (PI) e Yi Fang!
e George Ostrouchov, CSMD e David Gerdes?
(Co-PI) e Olufemi Omitaomu?
e Vladimir Protopopescu, CSED
(Co-Pl) ORNL SensorNet®
External Collaborators e Frank DeNap
e Arindam Banerjee, UMN e lan Gross
e Amrudin Agovic3® UMN e Bruce Patton
1: CSED Post-Master e Steven Saavedra
2: CSED Post-Doc L Randy Walker

3: UMN PhD Student
Funding provided by the Director’s R&D funds of ORNL’s LDRD program
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Radiation Detection
Systems S

tatic Scale

Weigh Station Viewer: |-40 near Watt Road, TN




Descriptive Analysis of Static Scale Data
From Data to Questions

Advanced descriptive analysis

of static scale data raises David Gerdes, Shiraj Khan, Auroop
intriguing questions Ganguly (2006): ORNL Tech Manual

Lengin vs Speed

Agovic et al. (20006): Ref. Next Slide _ Em

Truck speed histogram |DctoberlS)
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& ; Significant nonlinear correlation
ot g " | between truck length and speeds even
Power law behavior in truck speeds? though linear correlation is absent?




Anomaly Analysis from Static Scale Data
Nonlinear Dimensionality Reduction
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Linear Data
Representation (MDS)

Nonlinear dimensionality
reduction followed by anomaly
analysis on the manifold
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Density Estimation in
Transformed Space (RBFs)
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Monfinear Data Representation
(ISOMAP) with Outliers

Agovic, A., Banerjee,
A., Ganguly, A., and
V. Protopopescu
(2006): Anomaly
Analysis with
Manifold Embedding
and lts Applications
to Transportation
Corridors, ORNL: To
be submitted.




Online Anomalies from Static Scale Data
Probabilistic PCA and Chi-Squared

Onliline anomaly
detection based
on probabilistic
dimensionality

reduction and a

Tha second Princpsl Componsni
E = ] =1 & & & o =

Probabilistic PCA
(Visually same as
PCA of Agovic et al.)

Chi-Squared

goodness of fit
measure

Yi Fang, Auroop Ganguly
(2006): ORNL Tech
Manual

Chi-Square statistics
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Spectroscopy data Simulated by MCNP

.........

1. Cat litter with hidden | :
C$S-137 isotopes 1 il 2. Cat litter with seed B

Cme ]
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Oma Frath | | Dz Fretia ||

3. Cat litter with seed A . 4. Cat litter with hidden

il Ba-133 isotopes

! W e ) I N, | | S F

. 5. Cat litter with different stride _ Simulated Data Generated by
.. Bruce Patton
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