
Hardware and Hardware and
Software
Considerations Considerations
for VV&UQ

David E. Bernholdt

Oak Ridge National Laboratory
bernholdtde@ornl.gov

14 November 2010 1VVUHPC 2010

What to Expect in this Talkp

A l k t f lt t l d i th f t• A look at fault tolerance, now and in the future
– More reasons why V&V and UQ will become increasingly

important

• A look at some software techniques that may help
– Developing an infrastructure that makes V&V and UQ easier
– Looking primarily inside the applications

• Don’t expect solutions
– There is much research to be done in this area

14 November 2010 2VVUHPC 2010

Not All Faults Lead to Fail-Stop p
Situations

It i i HPC t thi k b t f lt t l i• It is common in HPC to think about fault tolerance in
terms of fail-stop situations
– A node overheats and shuts down
– A disk refuses to spin up
– A network router dies

• Checkpoint/restart is the most widely used FT technique
in HPC
– Primarily to mitigate fail-stopPrimarily to mitigate fail stop

• But what about faults that progress to errors, but not to
failures?failures?
– Especially silent data corruption!

14 November 2010 3VVUHPC 2010

Errors Abound!
• CPU

– Disabled ECC on ASCI Red processors due to firmware bug, manifested
in numerical error in Linpack benchmark execution (Constantinescu,
2000)

• Memory
– IBM Blue Gene/L had problems with parity errors in L1 cache. ~8 hr

MTBF for 64k node job, ~5 hrs for 104k nodes (Glosli, 2007)

• Storageg
– 3.45% of 1.53 M drives developed latent sector errors over a 32-month

period (Bairavasundaram et al., 2007)
– Read, write, compare 2 GB file every 2 hrs for 5 weeks on 3000 nodes

f d 500 100 d (P St i d l 2007)found 500 errors on 100 nodes (Panzer-Steindel, 2007)

• Network
– TCP/IP checksums and link-level CRCs miss errors in between one

k t i 16 106 d i 10 109 (St & P t id 2000)packet in 16×106 and one in 10×109 (Stone & Partridge, 2000)
– Note: on 10GigE: 16×106 packets in 2 min, 10×109 in < 24 hrs

14 November 2010 4VVUHPC 2010

The Trends are in the Wrong Directiong
• Origins of soft errors in logic devices

– Cosmic rays, radiation, power fluctuations, temperature y , , p , p
fluctuations, electrostatic discharge, manufacturing variances,
aging and breakdown, …

• Trends in VLSI componentsp
– Number of dopant atoms per transistor dropping exponentially
– Variability increases
– Soft-error rates increasing 8% per yearSoft error rates increasing 8% per year

Figures
from

Borkar,
2005

• Aggressive voltage scaling for power reduction
– More susceptible to fluctuations

14 November 2010 5VVUHPC 2010

Hardware-Only Solutions May Not Be y y
Feasible

• Most error detection and
recover schemes have
high performance, power,
and hardware costsand hardware costs
(sometime > 200%) for
100% tolerance

• Simpler checkers can
achieve 90% coverage
with 15-20% hardware
cost, with power
separately controllableseparately controllable
(Pan et al., 2008)

14 November 2010 6VVUHPC 2010

Connection to V&V and UQ

V&V d UQ t k l i “h til ” diti• V&V and UQ may take place in “hostile” conditions
– Distinguish hardware errors from software errors
– Distinguish errors from “natural” variation

• Careful characterization of code permits better detection
of errors when they occury

• Need new ways of thinking about software design to
account for V&V and UQ and error detection/correctionaccount for V&V and UQ and error detection/correction
– Detect silent data corruption
– Containment of errors (fail early)
– Make testing and comparisons easierMake testing and comparisons easier
– Generally defensive programming

14 November 2010 7VVUHPC 2010

Software Techniques to Considerq

T dd SDC bl ll t V&V d UQTo address SDC problems, generally support V&V and UQ
– Within applications rather than “outside”

• Fault tolerance-driven approaches
– Redundant execution
– Algorithm-based fault tolerance

• Interface contracts

• Component-based software development

14 November 2010 8VVUHPC 2010

Redundant Execution
2 d d ll d t ti 3 ti• 2x redundancy allows error detection, 3x+ correction

• Some possible implementation strategies
– Operating system level, e.g. PLR (probably not MPI-compatible)Operating system level, e.g. PLR (probably not MPI compatible)
– MPI-level, e.g. rMPI, P2P-MPI, Volpex MPI
– Application-level, not known (to DEB) in the wild
– User-level, e.g. run it twice!User level, e.g. run it twice!

• Status: not production, but could be soon
– I/O and related externalities

Ch ki f di i
PLR with 3 processes,
from Shye, et al., 2009– Checking for discrepancies

• Pros
– Should catch all SDC

o S ye, et a , 009

• Cons
– Expensive
– Hard to use selectively

rMPI mirror (l) and
parallel (r) protocols, from Hard to use selectively

– Hard to get it right (esp. communication)

14 November 2010 9VVUHPC 2010

Brightwell, et al., 2010

Algorithm-Based Fault Tolerance g
(ABFT)

B ild bilit t d t t t i t l ti• Build capability to detect, correct errors into solution
algorithms

• Some possible implementations
– Natural fault tolerance
– Reduced models as “backup” processesp p
– Build checksums into computations

14 November 2010 10VVUHPC 2010

ABFT through Natural Fault Tolerance
Related workshop: Scalable Algorithms for

Large-Scale Systems, Monday morning, Rm 274
•

• Choose (or design) a solution algorithm with
mathematical properties to naturally withstand faults of
concernconcern

• Status: Demonstrated for selected algorithms for fail-stop
node faults (Engelmann & Geist)
– Mesh-free chaotic relaxation

(Laplace/Poisson), finite
difference/element methods,
d i d ti fi t

From Engelmann, 2005

dynamic adaptive refinement,
asynchronous multi-grid
methods, Monte Carlo method,
peer to peer diskless gpeer-to-peer diskless
checkpointing, global peer-to-peer broadcasts of values, global
maximum/optimum search, Locally Self-consistent Multiple
Scattering (LSMS) method Molecular dynamicsScattering (LSMS) method, Molecular dynamics

• Not yet studied for data corruption errors
– Would depend on different mathematical properties

14 November 2010 11VVUHPC 2010

ABFT through Reduced
B k M d lBackup Models

• Use simplified or reduced fidelity version of model as a
backup process

• Primarily used in real-time environments (e.g. target
tracking)tracking)
– Primary process fails or misses deadline
– Backup runs quickly, “just good enough” to bridge to next step

S f ()• Status: just thought of it (in this context)
– Can reduced model track full model well enough

for error detection while staying cheap?

• Pros
– Similar to replicated execution, but cheaper

• Cons

Full
Model

Reduced
Model

Cons
– Requires that you know your model very well
– Effectiveness for SDC unknown

14 November 2010 12VVUHPC 2010

Comparator

ABFT through Checksumsg
• Augment simulation data with checksums that can be

carried through operations
D t t f l t d t– Detect errors, recover from errors or lost data

• Status: demonstrated for many linear algebra algorithms
(Dongarra et al.)

• AXPY, SCAL (BLAS1); GEMV (BLAS2); GEMM (BLAS3)
• LU, QR, Cholesky (LAPACK); FFT

• ProsPros
– Relatively

inexpensive
– Overhead scales ×+ A BCC =Overhead scales

with number of
faults tolerated

• Cons
From Bouteiller, 2009

Cons
– Needs to be extended beyond linear algebra
– May not catch all SDC (coding issues)

14 November 2010 13VVUHPC 2010

Interface Contracts
CCA
Common Component Architecture

COMPOSE-HPC

• Routine carries with it a set of pre- and post-conditions and invariants
as part of interface

Prerequisites for correct usage guarantees for results– Prerequisites for correct usage, guarantees for results

double dot (in array<double> u, in array<double> v,
in double tol)

i i i i i ithrows sidl.PreViolation, sidl.PostViolation;

require /* Preconditions */
u_is_1d: (u != null) implies (dimen(u) == 1;)
v_is_1d: (v != null) implies (dimen(v) == 1;)
same_size: size(u) == size(v);
non_negative_tolerance: tol >= 0.0;

ensure /* Postconditions */
areEqual(u, v, tol) implies (result >= 0.0);
(isZero(u, tol) and isZero(v, tol))

implies nearEqual(result, 0.0, tol);

14 November 2010 14VVUHPC 2010

Method parameters and returns Condition labels
“Built-in” methods (user-provided methods also possible)

Connection to V&V and UQ
• Could be used to capture V&V and UQ information

– Preconditions to ensure usage is consistent with V&V’ed range
– Postconditions for properties of output expected mathematically,

and through V&V and UQ
– Violation of postconditions may indicate data corruption

• Possible implementation strategies
– Macros (relatively common)
– Libraries (+ helpers) (CCA/Babel, a few others)(p) (,)
– Language built-ins (but not in traditional HPC languages)

• Pros
Other uses besides SDC VVUQ– Other uses besides SDC, VVUQ

– “Executable documentation”

• Cons
– Hard to distinguish small magnitude SDC (coverage not 100%)
– Contract clauses may be expensive

14 November 2010 15VVUHPC 2010

Contract Enforcement is a Concern
CCA
Common Component Architecture

COMPOSE-HPC

E f t f t t i h d li ti• Enforcement of contracts is overhead on application

• Common practice is to enforce contracts during
development, but not during production
– Trade correctness for performance
– Implicitly assumes development & testing provide same p y p g p

conditions as production

• Contracts cannot catch violations if they are not y
enforced!
– Production often stresses codes more than development & testing
– No chance to catch SDC unless contracts are enforcedNo chance to catch SDC unless contracts are enforced

14 November 2010 16VVUHPC 2010

Selective Enforcement in Babel
CCA
Common Component Architecture

COMPOSE-HPC

(Tammy Dahlgren , LLNL)

Provide enforcement policies besides “always” and “never”p y

• Note that clauses vary in computational complexity
– Constant time, simple expressions, linear time, method calls (unknown

t)cost), …

• Enforcement by complexity classification
– Whatever you think you can afford or will be most usefulWhatever you think you can afford or will be most useful

• Sampling of clauses
– Random, periodic, …

• Performance-constrained enforcement
– Set a limit on how much to spend on enforcement (i.e. 10% time)

Sample clauses to maximize coverage within limit (different schemes)– Sample clauses to maximize coverage within limit (different schemes)

• Not 100% coverage, but better than nothing
14 November 2010 17VVUHPC 2010

Example: Performance-Driven
CCA
Common Component Architecture

COMPOSE-HPC

p
“Adaptive Timing” Sampling Policy

Test programs:Test programs:

• MT: volume mesh
(ITAPS)

• A, MA, AA: simplicial
mesh (ITAPS)

• VT: vector (Babel)()

• Adaptive Timing
policy targets 10%

h d bioverhead, biases
enforcement towards
“fast” clauses

From Dahlgren, 2007-2008

14 November 2010 18VVUHPC 2010

Open Questions for Contractsp

Wh t dditi l t t biliti ld b f l f• What additional contract capabilities would be useful for
V&V and UQ?

• How to most effectively express and test VVUQ-related
contract clauses?

• Selective enforcement strategies to increase detection of
SDC?

14 November 2010 19VVUHPC 2010

Component-Based Software
CCA
Common Component Architecture

p
Development (CBSD)

• Latest in a series of
programming concepts toprogramming concepts to
help software developers
and architects deal with
complexity

• Components are units of
software thatsoftware that…
– Encapsulate specific functionality
– Expose that functionality via

well-defined interfaceswell-defined interfaces

• Internals of components are
opaque to other components

• Provides a “plug and play” concept for software
– Components providing the same interface are interchangeable

14 November 2010 20VVUHPC 2010

Connection to V&V and UQ
CCA
Common Component Architecture

D i ft th t t th• Design your software so that you can swap out the
implementations of key parts for other implementations
when you need toy

• “Toolkit” of interchangeable components for different
types of problemstypes of problems

• Replace a simulation component with one that replays
experimental results

• Cross-code comparison
– Assessed reference code

Alt ti l ith– Alternative algorithms

• Side by side comparisons (selective redundant execution)
14 November 2010 21VVUHPC 2010

Computational Facility for Reacting
CCA
Common Component Architecture

p y g
Flow Science (CFRFS)

• A toolkit to perform • More than 100 p
simulations of lab-sized
unsteady flames

Solve the Navier Stokes

components in toolkit
• ~40 needed for typical

simulations– Solve the Navier-Stokes
w/detailed chemistry

– Various mechanisms up to
~50 species 300 reactions

simulations

50 species, 300 reactions

14 November 2010 22VVUHPC 2010

CCA-based combustion application “wiring
diagram” and results. Courtesy Cosmin
Safta, (SNL)

Center for the Simulation of RF
Interactions with

Magnetohydrodynamics (SWIM)
• Integrated modeling of RF,

heating, transport, and
magnetohydrodynamics in

• Multiple components for
each class of physics

e g AORSA and TORICmagnetohydrodynamics in
fusion plasmas

– e.g. AORSA and TORIC
• “Replay” components

14 November 2010 23VVUHPC 2010

Open Issues for Component-Based p p
Software Development

CBSD i d l t h th t f• CBSD is more a development approach than a set of
tools
– Concepts influencing software architecture
– Benefits for VVUQ are indirect

• True plan-and-play of components is challengingp p y p g g
– Different algorithms often require different inputs

• V&V and UQ for components vs whole applications (or p pp (
specific problems)

14 November 2010 24VVUHPC 2010

Summaryy

• Increasing likelihood of silent data corruption on future
hardware may become problematichardware may become problematic
– Unlikely to be dealt with entirely in hardware

• V&V and UQ of applications likely to take place in a
“hostile” environment

• Software mechanisms are available to help catch silent
d t tidata corruption
– Redundant execution (100% coverage possible)
– Algorithm-based fault tolerance
– Contracts
– Component-based software development

• Need to think about software in new ways to takeNeed to think about software in new ways to take
advantage of them

14 November 2010 25VVUHPC 2010

