
Applying Software Engineering Principles to
the Development of Scientific and

Engineering Software:
Lessons Learned from a Series of Case

Studies and Workshops

Jeffrey C. Carver

University of Alabama

VVUHPC 2010

November 14, 2010

Outline

 Introduction
 Methodology

 Projects Studied

 Lessons Learned

 SE-CSE Workshops

 Summary

 Future Work

 2

Introduction

 Goal: Support CS&E developers

 Gather information about effective and
ineffective practices

 Understand and document software
development practices

 Provide feedback to teams

 Approach: Various types of studies

3

Areas of Study

Effort

• How to measure?

• What variables affect?

• Relationship between effort and other variables?

• What activities consume effort?

Development Workflow

• What is the normal workflow?

• Work vs. rework?

• Can automated data collection be used to measure steps?

• Which techniques are effective / not effective?

Defects

• Domain-specific defects?

• Can we identify patterns?

• Can we measure effort to find and fix defects?

4

Types of Studies

5

Controlled experiments
Study programming in the small

under controlled conditions to:

Identify key variables, check out

methods for data collection, get

professors interested in

empiricism

E.g., compare effort required to

develop code in MPI vs.

OpenMP

Observational studies
Characterize in detail a realistic

programming problem in realistic

conditions to:

validate data collection tools and

processes

E.g., build an accurate effort data

model

Case studies and field

studies
Study programming in the large

under typical conditions

E.g., understand multi-

programmer development

workflow

Surveys, interviews &

focus groups
Collect “folklore” from

practitioners in government,

industry and academia

e.g., generate hypotheses to test

in experiments and case studies

Overall Goals

Gain Insight

Impact Real-World

Practice

Case Study Methodology

Identify a Project

Negotiate
Participation with

Team and
Sponsor

Conduct Pre-
Interview Survey

Analyze Survey
Responses and
Plan On-Site

Interview

Conduct On-Site
Interview

Analyze On-Site
Interview and
Integrate with

Survey

Follow-up with
Team to Resolve

Issues

Draft Report and
Iterate with Team

and Sponsor
Publish Report

6

Projects Studied

7

FALCON HAWK CONDOR EAGLE NENE OSPREY HARRIER

Application
Domain

Prediction of
Product

Performance

Predication of
Manufacturing

Process

Analysis of
Product

Performance

Signal
Processing

Calculate
Molecule
Properties

Weather
Forecasting

Engineering
Mesh

Generation

Duration
(Years)

~ 10 ~ 6 ~ 20 ~ 3 ~ 25 ~10 ~8

of
Releases

9 (production) 1 7 1 ? ? ~16

Staffing
(FTEs)

15 3 3-5 3
~10 (100’s of
contributors)

~10
5 primary +

students

Customers < 50 10s 100s None ~ 100,000 100s 10s

Code Size
(LOC)

~ 405,000 ~ 134,000 ~200,000 < 100,000 750,000 150,000 50,000

Primary
Languages

F77 (24%),
C (12%)

C++ (67%),
C (18%)

F77 (85%)
C++,
Matlab

F77 (95%) Fortran
C++ (50%),

Python
(50%)

Other
Languages

F90, Python,
Perl,

ksh/csh/sh
Python, F90 F90, C, Slang

Java
Libraries

C C None

Target
Hardware

Parallel
Supercomputer

Parallel
Supercomputer

PCs to Parallel
Supercomputer

Embedded
Hardware

PCs to Parallel
Supercomputer

Parallel
Supercomputer

Linux,
Windows

Lessons Learned

Lessons Learned:
Overview

 Verification and Validation are difficult

 Performance competes with other goals

 Use of higher-level languages is low

 Developers prefer command line over IDE

 Agile development methods are useful

 Primary language does not change

 External software is risky

 Multi-disciplinary teams are important

 Success/failure depends keeping
customers/sponsors satisfied

9

Lessons Learned:
Validation and Verification

10

Lessons Learned:
Validation and Verification

Validation

• Does the software correctly capture the laws of nature?

• Hard to establish the correct output of simulations a priori

• Exploring new science

• Inability to perform experimental replications

Verification

• Does the application accurately solve the equations of the
solution algorithm?

• Difficult to identify problem source

• Creation of mathematical model

• Translation of mathematical model into algorithm(s)

• Implementation of algorithms in software

11

Lessons Learned:
Validation and Verification

 Vary in formality and completeness
 Core algorithms vs. User Interactions

 Percentage of code tested

 Dedicated testers vs. End users

 Required by sponsor?

 Existing verification techniques not useful

12

“V&V is very hard because it is hard to come up with good test

cases”

Lessons Learned:
Validation and Verification

13

“I have tried to position CONDOR to the place where it is kind

of like your trusty calculator – it is an easy tool to use. Unlike

your calculator, it is only 90% accurate … you have to

understand that then answer you are going to get is going to

have a certain level of uncertainty in it. The neat thing about it

is that it is easy to get an answer in the general sense <to a

very difficult problem>.”

“We have a rule of thumb. We plot 2 lines (from Matlab and

C++ programs) and if close, then it is ok.”

“It is an engineering judgment as to which errors are important

and which ones are on the margins”

Lessons Learned:
Validation and Verification

 Implications

 Traditional software testing methods are not
sufficient

 Need methods that ensure the quality and
limits of software

 Suggestions

 Inspections

 Better planning

 Use of regression test suites

 14

Lessons Learned:
Development Goals

 Multiple goals are important
 Performance – software is used on supercomputer

 Portability and Maintainability – platforms change
multiple times during a project

 Success of a project depends on the ability to port
software to new machines

 Implications
 The motivation for these projects may be different

than for traditional IT projects

 Methods must be chosen and tailored to align with
the overall project goals

15

Lessons Learned:
Use of Higher-Level Languages

 Implications
 CS&E domain places more constraints on the language

that the Business/IT domain
 A language has to

 Be easy to learn
 Offer reasonably high performance
 Exhibit stability
 Give developers confidence in output of compiler

16

I’d rather be closer to machine language than more abstract. I know even

when I give very simple instructions to the compiler, it doesn’t necessarily

give me machine code that corresponds to that set of instructions. If this

happens with a simple do-loop in FORTRAN, what happens with a monster

object-oriented thing?

•MATLAB

•Code is not efficient or fast enough

•Used for prototyping

•C++

•Used by some newer teams

•Mostly used the C subset of C++

Lessons Learned:
Agile vs. Traditional Methodologies

17

Lessons Learned:
Agile vs. Traditional Methodologies

 Requirements constantly change as scientific
knowledge evolves

 “Agile” software development methods
 Tend to be more adaptable to change

 Favor individuals and practices over process and tools

 Teams operate with agile philosophy by default

 Implications
 Appropriate, flexible SE methodologies need to be

employed for CS&E software development

 Agile-inspired approaches may be most appropriate
18

Software Engineering for Computational
Science and Engineering (SE-CSE)

Workshops

19

SE-CSE Workshops

 Facilitate interaction between SE and
CS&E

 Held at ICSE and at ICCS

 Important Topics of Discussion
 Differences between research and IT software

 CS&E software quality goals

 Crossing the communication chasm

 How to measure impact on scientific
productivity

20

SE-CSE Workshops
Differences

 Complex domains

 Main focus on science/engineering

 Long lifecycles

 Investigation of unknown introduces risk

 Unique characteristics of developers
 Deep knowledge of domain – lack formal SE

 Often the main users of the software
21

SE-CSE Workshops
Quality Goals

 Lack of viable V&V techniques

 Focus on process transparency

 Guaranteed not to give an incorrect output

 Other SE characteristics not as important

 Testability, reusability, maintainability

22

SE-CSE Workshops
Communication

 Need to eliminate the stigma associated with SE

 Software Engineers need to
 Understand CS&E domain constraints
 Understand specific CS&E problems
 Learn from CS&E developers
 Describe SE concepts in terms familiar to CS&E

developers

 Need people with expertise in both SE & CS&E

 CS&E teams need:

 To realize a problem before needing help
 Real examples of SE success within their domain

23

Summary

 Six case studies of CS&E software projects

 Nine lessons learned

 Summary of SE-CSE workshops

 Contributions
 Observations about why the development process

is different for CS&E software

 Insights into lack of use of traditional SE
approaches

 Ideas to guide the improvement SE for CS&E
24

Future Work

25

Question:

• Why don’t Computer Science and Software Engineering
researchers try to solve the real software development
problems that scientists face on a daily basis?

Question

• If people effects are so much more important than tool effects,
why don’t we focus on improving people and their practices
rather than tools?

Answer

• Study ongoing scientific software development in context

• Identify strengths and weaknesses

• Develop and evaluate relevant solutions

• Improve real-world projects

Future Work – Collaboration Ideas

26

Project Team

Strengths &

Weaknesses

in

Development

Process

Software

Engineering

Techniques

1. Perform Case

Study

2. Develop

Software

Engineering

Techniques

3. Deploy

and

Evaluate

4. Synthesize

Results

Acknowledgements

 Doug Post, Richard Kendall (LANL, SEI)

 Susan Squires (SUN)

 Christine Halverson (IBM)

 DARPA HPCS project

27

Further Readings:
SE for CSE

 Carver, J., Kendall, R., Squires, S. and Post, D. “Software Development
Environments for Scientific and Engineering Software: A Series of Case
Studies.” Proceedings of the 2007 International Conference on Software
Engineering. Minneapolis, MN. May 23-25, 2007. p. 550-559.

 Basili, V., Carver, J., Cruzes, D., Hochstein, L., Hollingsworth, J., Shull, F.
and Zelkowitz, M. "Understanding the High Performance Computing
Community: A Software Engineer's Perspective." IEEE Software, 25(4): 29-
36. July/August 2008.

 Carver, J., Hochstein, L., Kendall, R., Nakamura, T. Zelkowitz, M., Basili, V.
and Post, D. “Observations about Software Development for High End
Computing.” CTWatch Quarterly. November, 2006. p. 33-37. (Invited
Paper).

 Hochstein, L., Nakamura, T., Basili, V., Asgari, S., Zelkowitz, M.
Hollingsworth, J., Shull, F., Carver, J., Voelp, M., Zazworka, N., and
Johnson, P. “Experiments to Understand HPC Time to Development.”
CTWatch Quarterly. 2(4A): 24-32. November, 2006

28

Further Readings:
SE-CSE Workshops

 2009
 http://www.cs.ua.edu/~SECSE09
 Carver, J. “Report from the Second International

Workshop on Software Engineering for
Computational Science and Engineering (SE-CSE
09).” Computing in Science & Engineering. 11(6):
14-19. Nov/Dec. 2009.

 2008

 http://www.cs.ua.edu/~SECSE08
 Carver, J. "First International Workshop on

Software Engineering for Computational Science
and Engineering." Computing in Science &
Engineering. 11(2): 8-11. March/April 2009.

29

http://www.cs.ua.edu/~SECSE09
http://www.cs.ua.edu/~SECSE08

Further Readings:
Case Studies

 Kendall, R., Carver, J., Fisher, D., Henderson, D., Mark, A., Post, D.,
Rhoades, C. and Squires, S. "Development of a Weather Forecasting Code:
A Case Study." IEEE Software, 25(4): 59-65. July/August 2008.

 Kendall, R.P., Carver, J., Mark, A., Post, D., Squires, S., and Shaffer, D.
Case Study of the Hawk Code Project. Technical Report, LA-UR-05-9011.
Los Alamos National Laboratories: 2005.

 Kendall, R.P., Mark, A., Post, D., Squires, S., and Halverson, C. Case Study
of the Condor Code Project. Technical Report, LA-UR-05-9291. Los Alamos
National Laboratories: 2005.

 Kendall, R.P., Post, D., Squires, S., and Carver, J. Case Study of the Eagle
Code Project. Technical Report, LA-UR-06-1092. Los Alamos National
Laboratories: 2006.

 Post, D.E., Kendall, R.P., and Whitney, E. "Case study of the Falcon
Project". In Proceedings of Second International Workshop on Software
Engineering for High Performance Computing Systems Applications (Held at
ICSE 2005). St. Louis, USA. 2005. p. 22-26

30

Thank You!

31

Jeffrey Carver

University of Alabama

carver@cs.ua.edu

http://www.cs.ua.edu/~carver

http://www.cs.ua.edu/~carver/Projects_CSE.htm

Applying Software Engineering Principles to the

Development of Scientific and Engineering

Software: Lessons Learned from a Series of

Case Studies and Workshops

mailto:carver@cs.ua.edu
http://www.cs.ua.edu/~carver
http://www.cs.ua.edu/~carver
http://www.cs.ua.edu/~carver/Projects_CSE.htm

