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Abstract—The increased resolution needs of high accuracy
codes applied on novel physical phenomena or configurations
require very large computing times even on advanced architec-
tures. In turn this makes the use of regular tools for uncertainty
quantification very problematic since multiple example runs
are needed to construct a statistical model for the response
of the system and the total number of runs is limited by the
computational budget. While multi-resolution approaches are
expected to alleviate this problem, the issue of constructing
reasonable models of the uncertainty propagation step out of
very few samples remains. To this end, we study the ability
of a Universal Gradient Enhanced Kriging Model to provide
an accurate model for uncertainty propagation out of very few
samples. For this model, the mean behavior of the surrogate
is determined by a polynomial regression and deviations from
this mean are represented as a gaussian process. Preliminary
tests with nuclear engineering data show the Universal Gradient
Enhanced Kriging Model provides a more accurate surrogate
model when compared to either regression or ordinary Kriging
models. We demonstrate that our approach produces good
uncertainty models even for the case where less than 10 sample
points are considered for nuclear engineering applications with
12 uncertainty parameters.

I. INTRODUCTION

In this work, we are concerned in propagation an uncertainty
set, U ∈ Rnu through an expensive software code, which
outputs the analysis function f(u). Since a sample is very
expensive, we cannot expect to use direct simulation in order
to propagate the uncertainty. Instead, we propose to use a
few samples ui and the function and gradient information
of f(u) in order to reduce the computational effort required
by the evaluation of samples outcome, in order to create an
approximate model of f̃(u) and an estimate of its error in
approximating f(u) in a statistical sense. The overall uncer-
tainty assessment, that includes both initial uncertainty and
small sample uncertainty propagation effects is then obtained
by interrogating the inexpensive approximate model f̃(u).
This approach is based on the observation that automatic
differentiation tools can provide the adjoint parametric deriva-
tive of sophisticated codes with an effort that is a small
multiple of the function evaluation [3] and, many times, as
we have experienced in our test case here, with an effort
that is essentially equal to it. Since the gradient provides

nu time more information about f , this has the potential
of drastically reducing the number of samples for the same
accuracy level. We have observed this fact in a polynomial
regression with derivative information approach that we have
recently introduced [7]. On the other hand that approach did
not provide an error estimate, something that we remediate
with this work. Our main inquiry is this: can uncertainty
models of scientific computing codes be constructed out of a
very small number of samples, say O(10)? To that end, we
investigate an extension of our regression approach, where
the polynomial regression model becomes the mean of a
Gaussian Process model. This has the potential of identifying
correlations in uncertainty space and further reducing the
propagation uncertainty, f̃(u)− f(u).

II. UNCERTAINTY PROPAGATION WITH DERIVATIVE INFO
USING GAUSSIAN PROCESSES

We will use an uncertainty model, where we assume that
the response of the system can be represented as a Gaussian
process with explicit mean function and specified covariance
function governed by a set of parameters (here after known
as hyperparameters). This assumption can be represented
functionally as: ŷ = N(h(~x)β,K(~x, ~x; θ)), where h(~x) is a
column vector containing the basis functions of the regression
(or, equivalently, mean function) evaluated at the point ~x and β
are the regression parameters. The parameters β and θ can be
determined from data points by using a maximum likelihood
approach [10], [6]. Once the parameters of the model are
determined, model predictions with uncertainty throughout the
domain are subsequently determined by sampling from the
conditional distribution y∗| ~X, Y where ~X, Y are the training
data [6]. This approach is called kriging, and it originates in
geostatisics applications [1] where it is used as a technique for
interpolation of spatial fields. Kriging is a very versatile ap-
proach for representing functional responses with uncertainty
and has been used in robotics applications [11], climate [4],
atmospheric chemistry [2], composite materials [8]. Several
other application areas are presented in the monograph [6].

Gradient information may be included in the Gaussian
process model and the covariance matrix becomes a block



matrix which includes the covariance between derivative ob-
servations and function observations. This block matrix can
be represented as [9]:

K =

[
cov(Y, Y ) cov(Y,∇Y )
cov(∇Y, Y ) cov(∇Y,∇Y )

]
(1)

where cov(Y, Y ) represents a covariance matrix between the
function values at the training points, cov(∇Y, Y ) is a covari-
ance matrix between gradient components and the function
values at the training points and cov(∇Y,∇Y ) is a covariance
matrix between gradient components. For clarity, if n is the
number of training points and d is the dimension of the
problem, then cov(Y, Y ) is an n × n matrix, cov(∇Y, Y ) is
size nd × n and cov(∇Y,∇Y ) is nd × nd. The total size of
K is thus (d+1)n× (d+1)n. The components of the matrix
cov(Y, Y ) are given by cov(y, y′) = k(~x, ~x′) [5].

The covariance function between function values and gra-
dient functions then becomes cov( ∂y

∂xk
, y′) = ∂

∂xk
k(~x, ~x′).

Differentiating once more (now w.r.t to the second argument of
the covariance function) gives the covariance between gradient
components: cov( ∂y

∂xk
, ∂y

′

∂xl
) = ∂2

∂xk∂xl
k(~x, ~x′). The gradient

vector and hessian matrix resulting from equations can then
be arranged into the matrices cov(∇Y, Y ) and cov(∇Y,∇Y )
respectively.

The improved model is extended to include derivative values
by using the block-wise definition of the covariance matrix
outlined in the previous section and extending the regression
matrix to include derivatives of the basis functions. First,
the definition for the regression parameters must be updated
to include derivatives. This is done by using the block-wise
definition of the covariance matrix as well as including basis
function derivatives in the regression matrix. The formula for
the regression parameters is now given by:

β̂ =

(
[HTGT ]K−1

[
H
G

])−1
[HTGT ]K−1

[
Y
δY

]
(2)

where G is a matrix containing the derivatives of the basis
functions and δY is a vector of gradient observations. Using
this new definition of regression parameters, the mean value
of the model can be predicted as [9]:

y∗| ~X, Y, δY = [kT∗ w
T
∗ ]K

−1
[
Y
δY

]
+R(~x∗)β̂

where w is the vector of covariances between the test point
function values and the gradient at each training point and R
is a Schur complement involving the covariance matrix . The
variance associated with this prediction can now be calculated
as:

V [y∗] = cov(~x∗, ~x∗)−[kT∗ wT
∗ ]K

−1
[
k∗
w∗

]
+R(~x∗)A

−1R(~x∗)
T

(3)
where A and R are now defined in the block sense presented
previously.

A. Hyperparameter Fitting

With the functional form of the covariance function speci-
fied, only the hyperparameters need to be determined in order
to fully specify the covariance function. For this work, the
hyperparameters are determined by maximizing the marginal
likelihood function for the data given the functional form
we have assumed. Its formula can be extended to include
gradient observations by treating K as a block matrix and
including derivative observations in the quadratic terms and
the regression matrix: log(p(y|X; θ)) = − 1

2Y
TK−1Y +

1
2Y

TCY − 1
2 log|K| −

1
2 log|A| −

n−s
2 log2π, where C =

K−1HA−1HTK−1 [5]. Here, A is the regression matrix
(A = HTK−1H) and s is the number of terms in the mean
model. The model can be easily modified to account for the
gradient information. The optimization is carried out using
a combination of L-BFGS and an active set algorithm. The
L-BFGS algorithm is used to get within the vicinity of an
extrema. At this point, the active set algorithm is used to
further hone in on the maximum and ensure the maximum is
global and not just local. To further avoid local maxima, a fixed
number of initial starting points (∼ 5) are tested. Despite these
mitigating practices, the selection of local minimum represents
a problem for this method of determining hyperparameters.
The local minimum problem creates problems with repeata-
bility of results. The local minimum problem seems to be a
bigger problem for models built with gradient observations
(GEK model) then traditional Kriging methods.

III. RESULTS FOR SIMULATION DATA

In order to assess the utility of the Gradient Enhanced Uni-
versal Kriging (GEK) Model for representing the uncertainty
space relating to engineering simulations and predicting the
error associated with regression, data derived from thermo-
hydraulic simulations of a sodium cooled fast reactor was
used. The simulation problem is defined by twelve parameters
relating to the thermodynamic and heat transfer relations
present in the reactor. The main output of interest for this
simulation is the peak fuel pin temperature. The model and
previous work that approximated the uncertainty propagation
via regression with Hermite polynomials is described in [7].
In order to improve upon this regression based representation,
the gradient enhanced Kriging model was applied to the data.
The performance of the Kriging model was compared to other
approaches for uncertainty propagation, such as regression
or ordinary Kriging. Additionally, the ability of the Kriging
model to predict the propagation uncertainty by means of the
variance in the Kriging model was tested.

For these tests, a set of 500 peak fuel temperature values
were generated using the original code. For the tests, the
polynomial order in regression and mean function as well as
the number of training points were varied. Additionally, for
one of the tests error was intentionally introduced into the
model training by basing the model on partially converged
function results. This test was performed to assess the ability
of both models to capture the true uncertainty space with
imprecise training data, as well as test the ability of the



TABLE I
COMPARISON OF ERROR FOR KRIGING AND REGRESSION MODELS

Data Set GEK RMS Regr. RMS GEK Max Regr. Max
1 0.11554 0.47118 0.70207 2.194
2 0.58351 0.76058 2.5731 3.2553
3 0.77163 1.1982 3.2202 4.8668
4 0.77163 1.289 3.2204 5.0067

TABLE II
STATISTICS FOR KRIGING PREDICTION

Data Set ±1σ ±2σ ±3σ
1 0.690 0.882 0.950
2 0.378 0.568 0.668
3 0.362 0.626 0.720
4 0.362 0.626 0.720

Kriging model to predict the higher error associated with this
model. The accuracy of the models was determined based on
comparing model predictions to the 500 function values using
the RMS error and max difference as measures of the error.

In order to gauge the relative performance of the various un-
certainty propagation aproaches, such as GEK and regression-
based approach, the max error and RMS error of the the
approaches models for several data sets was measured and
compared. For these tests, GEK and regression used the same
training data and basis functions (for the mean function in
case of GEK). To assess the overall performance of the GEK
versus the regression model, the performance was tested on
one or more of four scenarios.These were 1) a maximum third
order polynomial based on 8 training points, 2) a maximum
second order polynomial based on 6 points, 3) a second
order polynomial based on 4 points and 4) a second order
polynomial based on 4 training points with partially converged
function values.

A. GEK versus Regression

The maximum difference between model and actual func-
tion values as well as RMS error between model and actual
values are found in table I for the four different scenarios. In
addition to observing the effect on mean prediction accuracy,
the ability of the variance to provide a confidence interval on
the result was assessed. To assess this quality of the model,
the fraction of validation points within 1,2 and 3 standard
deviations of the mean prediction was examined. Ideally, these
fractions should correspond to a normal distribution with 68%
falling within the first standard deviation, 95% within the
second and 99% within three standard deviations. The results
for each scenario are given in Table II. For these tests, the
square exponential covariance function was used.

In the context of simulation, where the cost is dominated
by acquiring the training data, creation of the regression
data and Kriging model have essentially the same cost. For
all scenarios tested, the GEK approach outperformed the
regression based model. For the third order regression case the
normal approximation is an excellent one. For the other cases
the normal distribution is not a very good one (the tails are
fatter) but the 3σ intervals contain indeed a large proportion

TABLE III
COMPARISON OF ERROR BETWEEN COVARIANCE FUNCTIONS

Covariance Function RMS Error Max Error
Cubic Spline 1 0.57759 2.2239
Cubic Spline 2 0.26542 1.5721

Squared Exponential 0.11554 0.70207
Matern-3/2 0.33149 1.7272
Matern-5/2 0.20259 1.1576

TABLE IV
COMPARISON OF DATA DISTRIBUTION BETWEEN COVARIANCE

FUNCTIONS

Covariance Function ±1σ ±2σ ±3σ
Cubic Spline 1 0.290 0.592 0.758
Cubic Spline 2 0.776 0.878 0.930

Squared Exponential 0.690 0.882 0.95
Matern-3/2 0.676 0.874 0.932
Matern-5/2 0.704 0.884 0.928

of the data. It should be pointed out, however, that the last
case contains 2 and 4 sampling points, an exceedingly small
number. Experimentation with other kernels is in progress the
other 3 data sets, in order to determine the influence of the
choice on the kernel on the results.

To assess the role played by choice of covariance function,
a Kriging model for the third order regression test case was
created with each of the five different covariance functions
considered for this work. Table III shows the RMS error and
Max error for each covariance function and Table IV contains
the distribution of the data around the mean prediction.

As these results show, the choice of covariance function can
dramatically change the accuracy of the model predictions. As
expected from the tests using explicit functions, the squared
exponential gives the most accurate mean predictions. Unex-
pectedly, the squared exponential also gives a distribution of
the data which is closest to a normal distribution, although
the Matern functions and the Cubic Spline 2 covariance also
give reasonable data distributions. Again, these results imply
that the distributions predicted from the assumption of the
Gaussian Process become more valid as the accuracy of the
model increases.

B. Error Prediction

Finally, the error associated with the original regression was
predicted using the Kriging model. This was first performed
using the 4 scenarios outlined previously. In order to assess the
prediction of the error, the point-wise actual error was plotted
along with the mean and worst case error predictions. In order
to provide a quantitative measure of the prediction, the correla-
tion between the mean error and worst case error predictions
with the true error was calculated for each scenario. As a
final measure, the fraction of validation points encompassed
by the worst case error prediction was calculated in order to
determine the validity of the error bound. Because the worst
case error prediction is based on the 99% confidence interval
of the Kriging prediction, this last measure is equivalent to the
fraction of data points whose actual function value lie within



Fig. 1. Point-wise error prediction with actual error for third order regression
based on 8 training points

Fig. 2. Point-wise error prediction with actual error for second order
regression based on 6 training points

three standard deviations of the Kriging prediction. For these
tests, the square exponential covariance function was used.

For the third order regression case, the error prediction
closely matches the actual error and the worst-case error
estimate just bounds the actual error in the domain. This result
is unsurprising as the error in the Kriging approximation of the
function is low. For the other test cases, the error prediction
is less accurate and worst-case error bounds only a portion
of the actual error. For all the test cases, the error prediction
is positively correlated with the actual error and a relatively
large fraction of the data is encompassed by the error bound.
Hence, even for cases in which the Kriging model still contains
significant approximation error, the error prediction and bound
still provides some information as to the distribution of the
error throughout the domain and a rough estimate as to level
of error present in the regression model. In cases in which

TABLE V
CORRELATION BETWEEN ACTUAL ERROR AND PREDICTED ERROR

Data Set Corr. for Mean Corr. for Worst-case Fraction Covered
1 0.965 0.913 0.950
2 0.592 0.630 0.668
3 0.848 0.782 0.720
4 0.864 0.822 0.720

TABLE VI
CORRELATION BETWEEN ACTUAL ERROR AND PREDICTED ERROR FOR

EACH COVARIANCE FUNCTION

Cov. Fcn. Corr. Mean Corr. Worst-case Fraction Covered
Cubic Spline 1 −0.217 0.050 0.758
Cubic Spline 2 0.791 0.666 0.930

Squared Exponential 0.965 0.913 0.950
Matern-3/2 0.594 0.493 0.932
Matern-5/2 0.859 0.737 0.928

the number of training points is limited by computational
budget, the Kriging model error predictor may represent the
only possible test for the accuracy of the regression model.

Because the accuracy of the mean predictions and the
magnitude of the variance are sensitive to the choice of
covariance function, the error prediction for the third order
regression was calculated using the five different covariance
functions in this work. The correlation with the actual error
and the fraction of validation points within the error bound can
be found in Table III-B. We see that the squared exponential
and the Matern functions correlate far better the predicted error
with the actual error.

IV. CONCLUSIONS AND FURTHER WORK

In conclusion, the Universal Gradient Enhanced Kriging
(GEK) model provides accurate representations of a function
space with limited number of function samples. It combines
the strenghts of both regression and Kriging models: it ex-
hibits fast convergences as the polynomial order is increased
and provides unbiased estimates of function behavior as the
number of training points is increased. In addition to function
predictions, the variance of the Kriging model provides a
reasonable confidence bounds for the prediction. For all cases
tested, the Kriging model provided an error prediction which
was positively correlated with the actual error in the domain.
The correlation was greatest for scenarios in which the Kriging
model represented a significant accuracy improvement over
the regression model. In addition, we find that, as in the
regression case that has preceded this work [7], the gradient
information greatly reduces the number of samples and com-
putational effort needed at the same accuracy level. Future
work will include issues in propagation and approximation
of adjoint derivative information in novel architectures, multi-
model/multi-resolution uncertainty estimates, and assessment
of the accuracy of uncertainty representation of GEK ap-
proaches for a larger spectrum of test codes.
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