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Abstract—We discuss uncertainty analysis of advanced simula-
tion models. At high model complexity, studying the propagation
of uncertainty is a serious challenge that cannot be resolved
by large-scale sampling alone. For many models, even with
improvement in hardware and computing techniques, only small-
scale sampling is feasible, and has to be combined with advanced
techniques to extract more information from each model run.
We have previously introduced a hybrid polynomial regression
method that constructs a surrogate uncertainty model using
the original model outputs, and also first derivatives of the
outputs as fitting conditions. In our ongoing work, we resolve
mathematical questions related to the method, including best
choice of approximating polynomial basis, and use of dimension-
ality reduction techniques to create a better representation of
uncertainty. Our main application area is nuclear engineering
simulation models. Our work also has implications for the
tasks of uncertainty quantification, verification and validation,
and parametric dependence analysis at extreme computational
complexity, in a wide range of applied fields.

I. INTRODUCTION

Many fields of modern science and technology require the
use of advanced simulation models. Improvements in hardware
and computing techniques allow models of high fidelity, high
geometric resolution, with a large number of effects taken into
account by the simulation. The task of uncertainty analysis
consists of relating the available information on uncertainties
(including measurement errors, discretizations and simplifi-
cations in the model setup) to the resulting variation in the
outputs of the model. The usual difficulties in performing
the analysis include the lack of convenient, low-dimensional
representation of uncertainty, nonlinearity in the dependency
of the model on parameters, high complexity of the model
code (so it cannot be rewritten for analysis purposes, or even
read completely by a specialist in feasible time), and high
computational cost of each model evaluation.

In our work, we mainly address the challenge that results
from high dimension of the uncertainty space, and high com-
putational cost of each model evaluation. When the dimension
is high, and it is not known which uncertainty states are
representative, comprehensive sampling is not possible. For
such cases, we have suggested that the effect of uncertainty can
be approximated by Polynomial Regression with Derivative
Information (PRD). In our main publication [1] we introduce
the basic form of the approach, and show that it offers substan-

tial advantage (in precision, computational efficiency, or both)
over classical methods of uncertainty analysis: pure random
sampling, linear approximation, and polynomial regression
that does not use derivative information. In subsequent work,
we raised additional questions, such as: selection of a better
polynomial basis for approximation, use of dimensionality
reduction to create an efficient representation of uncertainty in
very large models, and the technical task of applying automatic
differentiation to complex models.

In the following sections, we overview the approach, de-
scribe out typical applied cases, present recent results on
selection of the polynomial basis, and on reducing the dimen-
sion of the uncertainty space, and comment on the long-term
implications of our research effort.

II. POLYNOMIAL REGRESSION WITH DERIVATIVE
INFORMATION

Consider a generic model as a system of differential-
algebraic equations:

F (T,R) = 0
R = R(T ) · (1 + ∆R(T, x))

J = J(T ),
(1)

where the variables T = (T1, T2, ..., Tn) characterize the
model state; the intermediate (physical) parameters R =
(R1, R2, ..., RN ) include uncertainty-induced error terms
∆R = (∆R1,∆R2, ...,∆RN ); an output of interest is ex-
pressed by the merit function J(T ); uncertainty in the model is
described by a set of stochastic variables x = (x1, x2, ..., xd).
The structure under which uncertainty is introduced can be as
simple as ∆R(T, x) = x, or more complex, depending on the
modelling principles.

We redefine the output as a function of uncertainty quan-
tifiers: J(T ) := J(x) and choose a set {Ψl} of multivariate
polynomials to approximate the merit function:

J ≈ J̃ =
∑
i

aiΨi(x). (2)

For high validity of the surrogate model J̃ , the basis {Ψl}
should include polynomials of high order, but that does not
necessarily mean that the basis size grows uncontrollably with
increase in the uncertainty space dimension. If the variables



x can be ranked by importance (for example, using first-
order sensitivity information), it is possible to construct an
incomplete basis, with high-order polynomials in important
variables only. This realization that a truncated (or incomplete)
basis can be used is an important step in making the approach
effective [1].

The coefficients al are obtained by requiring that the func-
tion and the derivative values of the surrogate model J̃(x)
match the ones of the real model J(x), in a least-squares sense.
Approximation of the uncertain effects by a flexible basis
of functions on stochastic variables is essentially Stochastic
Finite Element method (SFEM; such a basis is sometimes
called polynomial chaos [2]); we extend the idea by using
derivatives as additional fitting conditions. The polynomial
regression equations are:
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,

(3)
where S1, S2, ...Sd are sample training points in the un-
certainty space: Si = (x

(i)
1 , x

(i)
2 , ..., x

(i)
m ). A single right-

side entry J(Si) generates a subcolumn of entries (∂J(Si)
∂xj

),
providing right-side information for several rows at once.

We justify our use of derivative information (as opposed
to adding more sample points) by the fact that it is possible
to obtain complete gradient information of the model with
a limited computational overhead, independent of the model
complexity. A computability theory result [3] puts this over-
head at 500%, making it advantageous to use PRD for models
with uncertainty dimension higher than 5.

Differentiation of the model, as a practical task, depends
on the available development budget, i.e. on how much in-
depth code analysis one can afford to perform. In the cases
where every part of the model is well-documented, and only
the large dimension of the input space is a challenge, we used
a simple chain-rule approach based on augmentation of the
code with partial derivatives of every mathematical procedure.
In effect, together with evaluation of the mathematical model
F (T,R(T, x)) = 0, we also solved the equations

(
∂F

∂T
+

∂F

∂R
· ∂R
∂T

) · dT
dx

+
∂F

∂R
· ∂R
∂x

= 0 (4)

to find dT
dx used in evaluation of dJ(T )

dx = ∂J
∂T · dT

dx . The
augmented model can then output both the state and the full

gradient in the same run, at acceptable computational overhead
of 100 to 200%.

For a wider class of models, with sparsely documented,
complex code, and high dimension of model state, a preferred
approach is the Automatic (or algorithmic) Differentiation
(AD), based on the same chain-rule (4), but constructed
automatically, with minimal human involvement. In an ideal
situation, the only required processing is to identify inputs
and outputs of interest. In practice, some compilation errors,
usually related to memory management, have to be resolved
for the code processed by automatic differentiation tools.

In our work, the mathematical structure of the model did not
have to be modified. In cases of inherent non-differentiability
of a mathematical operation, or incomplete convergence of an
iterative procedure, we suggest constructing (and differentiat-
ing) a smoothing interpolation of such problematic code por-
tions. This implies automatic detection of non-differentiable
code, a capacity that some AD tools already possess.

The technical task of differentiating models of industrial
complexity is a subject of on-going collaboration with AD
development groups. We are currently working on uncertainty
analysis of a much more complex SAS4A/SASSYS-1 (over
100,000 lines of code; uncertainty structure can thousands
of variables ). To our knowledge, successful automatic dif-
ferentiation and construction of high-validity representation
of uncertainty has not been performed at this complexity
level, although the code by itself requires modest comput-
ing resources. Computation at extreme scale can potentially
present additional difficulties for automatic differentiation.
For additional details on applying AD to complex (nuclear
engineering) simulation models, we refer to [4,5].

We note that almost every aspect of PRD can be improved.
The two primary issues are differentiation of the model (to
obtain derivatives with respect to at least some variables), and
choice of the polynomial basis (to make sure the regression
procedure is not badly conditioned). Other questions include
optimal selection of the training set, reduction in complexity
and dimension of the polynomial structure, and a posteriori
estimation of quality of polynomial approximation.

III. UNCERTAINTY ANALYSIS: APPLIED CASES

Our main application area is the currently expanding field
of nuclear engineering, where physical experimentation has al-
ways been very expensive, and sophisticated simulation codes
are used to design mechanisms of control, improve efficiency
and safety of engineering projects. While many industrial
simulation codes do not require high performance computing
resources, comprehensive description of uncertainty almost
always implies dimension on the order of thousands, or more.
In addition, the current change of computational and engi-
neering paradigm (”nuclear renaissance”, [6]) will lead to the
use of high-validity multiphysics codes with high associated
computational cost, and even higher cost of error analysis,
verification and validation, and uncertainty quantification.

Model I. For basic testing purposes, we use a simplified 3-
dimensional steady state model of a nuclear reactor core. The



requirements for this prototype code were to include sufficient
complexity to exhibit realistic structure geometry and tem-
perature distribution, and avoid design-specific complexities
of nuclear reactor analysis. Currently, the modelled effects
include simple heat transport (diffusion and convection) in the
core with an arrangement of a small number of fuel elements
and freely flowing coolant. The model can also take into
account neutron interactions (resulting in non-uniform heat
generation in the fuel elements), and changes in the chemical
composition of the fuel (fuel depletion). The output of interest
is the maximal temperature in the core.

The uncertainty in the model results from the experimental
errors in measurement of dependency of intermediate pa-
rameters (such as heat conductivity, heat capacity, neutronic
macroscopic cross-sections) on temperature; the uncertainty
quantifiers are dimensionless coefficients in the expressions
∆R(T, x). Depending on what effects are taken into account,
the effective dimension of the uncertainty space is 12 - 66,
larger if more fuel elements are added.

In our numerical experiments on Model I, PRD (with in-
complete basis, constructed on a training set of just 10 points)
shows an improvement in quality over linear approximation by
an order of magnitude (maximal relative error of 0.5% instead
of 10%. Other approaches required 100 or more samples for
the same precision.

Model II. To provide perspective, we also applied PRD to a
professional complexity code MATWS, a combination of the
neutron kinetics code from a larger SAS4A/SASSYS code, and
a representation of heat removal system. MATWS was used,
in combination with a simulation tool Goldsim, to model a
number of nuclear reactor accident scenarios [7].

The uncertain quantities in the model are the reactivity
feedback coefficients, the dimension is 4 - 10. Since most
accident scenarios involve overheating, an output of interest is
the maximal temperature (in the fuel, coolant, cladding, etc).

For model II, we constructed a surrogate model using 50
evaluations with derivative information. We then sampled the
(explicit) surrogate J̃ , and reproduced statistical results of an
accident scenario analysis [7] that required 1000 full model
runs. In Figure 1, we show the cumulative distribution of the
maximal temperature in the loss-of-coolant flow scenario; note
that the predicted distribution almost perfectly falls into the
95% confidence interval of the more expensive analysis.

IV. POLYNOMIAL BASIS SELECTION

The choice of polynomial basis for approximation is an
important feature of PRD setup. We inherited the use of
multivariate Hermite polynomial basis from SFEM, where
it was convenient for statistical reasons (orthogonality in
Gaussian probability measure). With the use of derivative in-
formation in (3), such standard choices as Hermite or Legendre
polynomials are no longer effective. In particular, they lead to
poor numerical conditioning in the regression. We have now
shown that for best conditioning, the elements of the basis

Fig. 1. MATWS: cumulative distribution of maximal terminal heat, ULOF
scenario

have to satisfy the orthogonality condition∫
Ω

(
Ψj(x)Ψh(x) +

d∑
i=1

∂Ψj

∂xi
(x)

∂Ψh

∂xi
(x)

)
dx = δjh (5)

sufficient to define a basis using Gram-Schmidt orthogonal-
ization.
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Fig. 2. Sorted error of PRD model: performance of the Hermite multivariate
basis (H) compared with adaptive basis selection using Orthogonal basis (O);
log10 plot

We tested the performance of the orthogonal basis (5) on
Model I. We observed a moderate improvement in numerical
conditioning of the regression matrix. The real advantage
of the orthogonal basis, however, becomes apparent in the
performance in combination with adaptive selection of the
incomplete (truncated) basis.

In our tests, we used a stepwise fitting procedure in which
polynomials are rejected from the expansion if their coeffi-
cients are consistently close to zero, or added to the expansion,
if they receive a non-negligible coefficient coefficient. The
process can go in two directions: either starting with a full



basis of fixed order and reducing the number of polynomials,
or starting with nothing and adding polynomials (of at most a
fixed order).

A comparison of complete versus truncated polynomial
basis, and of Hermite versus orthogonal polynomials on 18
sample points is shown in Figure 2. A combination of adaptive
basis construction and correct orthogonality condition results
in a more regular representation, with a significant improve-
ment in quality (maximal relative error of 0.2% instead of
1.1%). We hope to provide more detail in our upcoming
publication.

V. DIMENSIONALITY REDUCTION

Our previous work shows that for the dimension of uncer-
tainty space on the order of 10 − 100 the use of derivative
information allows to construct effective approximations of the
uncertainty effect. At the high end of the range, we observe
poor numerical conditioning of the regression matrix due to its
size, and overall inefficiency due to the large required training
set. This prompts our interest in dimensionality reduction of
the uncertainty space. Note that the reduction is not applied
to the model itself: the model state remains hidden (only
participating in differentiation procedures).

For dimensionality reduction, we use two variations of an
approach based on Principal Component Analysis (PCA).

For a large dimension of the input variable x and an ap-
proximation J̃ in the basis {Ψ}, we seek a reducing projection
y = Φx leading to an approximation

J ≈ J̃(Φx) =
∑
i

biΨi(y). (6)

The reduction, defined by Φ, is applied to the training set of
inputs (X = (Si)), which does not contain information about
the model, and may not have any exploitable structure to allow
reduction. Interaction with the model can be established via
assessing the influence of input set components on the output.

Approach I is based on dual-weighted variation of PCA,
discussed in [8]. In regular PCA, the projection Φ is chosen
as dominant eigenspace of correlation matrix C = X · XT .
To assign an importance measure wi to each input vector xi,
and importance measure λj to each input variable (xi)j), we
define Φ as dominant eigenspace of dual-weighted matrix

C = diag(λj) ·X · diag(wj) ·XT . (7)

We define the measures empirically: the most effective defini-
tion is based on sensitivity properties of the output J

Approach II is based on a form of latent factor extraction.
Suppose there exists a function f on a few variables, such that

J(x) = f(β1x, β2x, ..., βkx). (8)

Differentiation of (8) shows

span(∇J) ≈ span(βi) (9)

so Φ can be chosen as dominant eigenvector space on the ma-
trix that contains gradients of the output function at the points
in the training set. We note that Approach II is empirically

justified, it depends on whether span(∇J) can be sampled
efficiently: in very high dimension, this may be non-trivial.

Fig. 3. Sorted error of PRD model: linear model and model of order 2 on full
uncertainty space, dimension 66; model of order 3 on a reduced representation
of uncertainty space, dimension 4.

We tested the model reduction approaches on Model I,
with uncertainty space dimension set to 66. In Figure 3,
we compare the performance of a high-order approximation
on fewer uncertainty quantifiers with a lower-order surrogate
model on the full uncertainty space; reduction to dimension 4
is shown, the reduced model uses full basis of order 3.

In other experiments, Approach II showed a moderate
improvement over Approach I.

VI. CONCLUSION

We view the ongoing work as a successful part of a wider
research effort. We believe that it is possible to automatically
obtain sensitivity information, and then efficiently build high-
quality approximations of parametric dependence of a wide
class of models (the requirements are that access to source
code is provided, the model is differentiable, in case of large
dimension, at least some variables are not essential; work-
around techniques exist if any of the requirements are not
satisfied). This fact has has implications for the tasks of
verification and validation, as well. For example, in an en-
gineering design process, each model can be augmented with
its uncertainty representation, outputs of which can be used
in validation of other models, thus enabling multidisciplinary
validation as a natural part of the design process rather than
an expensive additional project. In the context of verification,
we find that computationally cheap approximations not only
helps to understand the behavior of a model, but also allows
the developer to locate important regions both in the parameter
space of the model, and in the execution flow of the code.
The advantages of using derivative information in uncertainty
analysis grow with the increase in the model complexity
and dimension; we believe that the use of such advanced
techniques is almost unavoidable at extreme scale.
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