
Polynomial Regression with Derivative
Information for Uncertainty Analysis of Complex

Simulation Models.

Oleg Roderick, Mihai Anitescu (Argonne National Laboratory)

Yiou Li (Illinois Institute of Technology)

Zhu Wang (Virginia Polytechnic Institute)

The 2010 Workshop on Verification,
Validation, and Uncertainty Analysis
in High-Performance Computing
VVUHPC 2010

November 14, 2010

Uncertainty Quantification, informal description

 Task of uncertainty quantification for a
simulation model:

- Given data about uncertainty parameters, and
a model code, characterize the effect of
uncertainty on an output.

- Use data to test whether uncertainty analysis
is valid, create error model for uncertainty
quantification itself.

Two classical
paintings with
“uncertainty”quantification itself.

 Multiple approaches exist. Some desirable
characteristics:

- Precise, efficient

- Non-intrusive

- Applicable to high-dimension of uncertainty
space

- Adaptable to different assumptions about
uncertainty.

“uncertainty”
theme.

Uncertainty Quantification at Higher End of
Computational Scale, current situation

 Straightforward approaches (sampling, sensitivity analysis, methods built on simplifying
statistical assumptions) may be ineffective:

- In general, analysis of a model that barely fits the available hardware may exceed the available
computational power.

- Absence of good uncertainty structure, limited understanding of regions in the uncertainty
domain, lack of error model for estimates of uncertainty effect – are all more noticeable in
higher dimension, higher complexity.

 We primarily need techniques that admit a very small number of model runs, but have capacity
to answer a wide range of analysis questions (verification of choice of uncertainty structure,
possibility for large-scale sampling of uncertainty space, ability to write confidence intervals,
error model for the technique).

 Such techniques are available, recently developed within our group. Right now, they are
developed in a basic form. Development effort is required for application to more complex
models, and technical difficulties will arise. However, our UQ research was always intended for
high-performance computing applications.

Faster Uncertainty Propagation by Using
Derivative Information?

 Uncertainty propagation requires multiple runs of a possibly expensive code.

 On the other hand, adjoint differentiation adds a lot more information per unit of cost (O(p),
where p is the dimension of the uncertainty space; though needs lots of memory).

 Q: Can I use derivative information in uncertainty propagation to accelerate its precision per unit
of computing time. How?

 We believe the answer is yes.

Representing Uncertainty

 Experimental data is scarce. Often, only a few measurements on range, and no record of statistical
distribution of uncertainty-induced error are available. We created our own data model (consistent with
performance metrics where specified, parameterized where not).

 We use hierarchical structure. Given a generic model with uncertainty

with model state

)()),(1()(

0),(

TJJTRTRR

RTF







),...,,(21 nTTTT ),...,,(21 NRRRR with model state

intermediate parameters and inputs

that include errors

An output of interest is expressed by the merit function

The uncertainty is described by a set of stochastic quantifiers

 Note: in our approach, the effect of uncertainty is parameterized by stochastic quantities, not
randomized with some a priori distribution. The quantifiers are physical, not statistical.

 We redefine the output as a function of uncertainty quantifiers,

and seek to approximate the unknown function

),...,,(21 nTTTT ),...,,(21 NRRRR 

),...,,(21 NRRRR 

)(TJ
),...,,(21 m 

)(:)(TJ 

)(

Polynomial Regression with Derivatives, PRD
 We approximate the unknown function by polynomial regression based on a small set of model

evaluations. Both merit function outputs and merit function derivatives with respect to uncertainty
quantifiers are used as fitting conditions.

 PRD procedure:

- choose a basis of multivariate polynomials*

the unknown function is then approximated by an expansion

- choose training set*

- evaluate the model and its derivatives** for each point in the training set

 )(q

 
q qqx)()(

 ),...,,(; 21
i
n

ii
iAA 

- evaluate the model and its derivatives** for each point in the training set

- construct a regression matrix. Each row consists of either the values of the basis polynomials,

or the values of derivatives of basis polynomials, at a point in the training set.

- solve the regression matrix (in the least-squares sense) to find coefficients

 Questions (for later):

- How to best choose the polynomial basis?

- How to obtain gradient information at computational cost comparable with that of a model run?

- What to do if dimensionality of uncertainty space is very high?

qx

Polynomial Regression with Derivatives, PRD
 PRD procedure, regression equations:

 Note: the only interaction with the

computationally expensive model

is on the right side!

 The polynomial regression approach







































































mmm

A
d

Ad

d

Ad
d

Ad
A

xAA
d

Ad

d

Ad

d

Ad

d

Ad
d

Ad

d

Ad
AA













)(

)(

)(

)(
)(

)()(

)()(

)()(

)()(
)()(

2

1

2

1

1

1

1

2221

1211

2

12

2

11

1

12

1

11

1211















 The polynomial regression approach

without derivative information would

require (n+1) times more rows.

The overall computational savings

depend on how cheaply the

derivatives can be computed

































































m

M

M

m

M

m

M

MM

d

Ad

A

d

Ad
Ax

d

Ad

d

Ad

AA

d

Ad

d

Ad
AA









)(

)(

)(
)(

)()(

)()(

)()(
)()(

1

2

2

21

21

1

22

1

21

2221

















PRD, computation of derivatives
 Hand-coding derivatives is error-prone, has large development cost, code maintenance is a problem.

Also, there is no natural way to compute derivative matrix-vector products without forming full matrices.

 Finite difference approximations introduce truncation errors, cost is subject to curse of dimensionality,
there is no natural way to compute derivative matrix-vector products.

 For most applied purposes, a more promising approach is Automatic (Algorithmic) Differentiation, AD. It
also uses the chain-rule approach, but with minimal human involvement.

Model re-design is not required!

Ideally, the only required processing is to identify inputs and outputs of interest, and resolve the errors at
compilation of the model augmented with AD.

Uncertainty quantification, subject models
 Model I. Matlab prototype code: a steady-state 3-dimensional

finite-volume model of the reactor core, taking into account heat

transport and neutronic diffusion. Parameters with uncertainty are

the material properties: heat conductivity, specific coolant heat,

heat transfer coefficient, and neutronic parameters: fission,

scattering, and absorbtion-removal cross-sections. Chemical

non-homogenuity between fuel pins can be taken into account.

Available experimental data is parameterized by 12-66 quantifiers.

 Model II. MATWS, a functional subset of an industrial complexity

code SAS4A/SASSYS-1: point kinetics module with a representation

of heat removal system. >10,000 lines of Fortran 77, sparsely

documented.

MATWS was used, in combination with a simulation tool Goldsim,

to model nuclear reactor accident scenarios. The typical analysis

task is to find out if the uncertainty resulting from the error in

estimation of neutronic reactivity feedback coefficients is sufficiently

small for confidence in safe reactor temperatures. The uncertainty is

described by 4-10 parameters.

Automatic Differentiation, AD
 AD is based on the fact that any program can be viewed as a finite sequence of elementary operations,

the derivatives of which are known. A program P implementing the function J can be parsed into a
sequence of elementary steps:

The task of AD is to assemble a new program P' to compute the derivative. In forward mode:

 In the forward (or direct) mode, the derivative is assembled by the chain rule following computational

)))((...(: 11 fffJP kk 

ik

k

k

k
i

f

f

f

f

f
JP

























1

2

1

1

...)(:'

 In the forward (or direct) mode, the derivative is assembled by the chain rule following computational
flow from an input of interest to all outputs. We are more interested in the reverse (or adjoint) mode that
follows the reversed version of the computational flow from an output to all inputs:

In adjoint mode, the complete gradient can be computed in a single run of P', as opposed to multiple runs
required by the direct mode.

 For inherently non-differentiable components of code, it is possible to construct a smooth interpolation.
Not a part of standard practice yet!

T

k

k

TT

f

f

f

ff
JP 








































11

21 ...)(:'




Applying AD to code with major legacy components
 We investigated the following question: are AD tools now at a stage where they can provide derivative

information for realistic nuclear engineering codes? Many models of interest are complex, sparsely
documented, and developed according to older (Fortran 77) standards.

 Based on our experience with MATWS, the following (Fortran 77) features make application of AD
difficult:

 Not supported by AD tools (since they are nonstandard) /need to be changed.

• machine-dependence code sections need to be removed (i/o)

• Direct memory copy operations needs to be rewritten as explicit operations (when LOC is used)

• COMMON blocks with inconsistent sizes between subroutines need to be renamed

• Subroutines with variable number of parameters need to be split into separate subroutines

 EQUIVALENCE, COMMON, IMPLICIT definitions are supported by most tools though they have to be
changed for some (such as OpenAD). (for Open AD statement functions need to be replaced by
subroutine definitions, they are not supported in newer Fortran)

 Note that the problematic features we encountered have to do with memory allocation and
management, not mathematical structure of the model! We expect that (differentiable) mathematical
sequences of any complexity can be differentiated.

Validation of AD derivative calculation

 Model II, MATWS, subset of SAS4A/SASSYS-1. We show estimates for the derivatives of the fuel and
coolant temperatures with respect to the radial core expansion coefficient ,obtained by different AD
tools, and compared with the Finite Differences approximation, FD.

All results agree with FD within 0.01% (and almost perfectly with each other).

AD tool Fuel temperature derivative,
K

Coolant temperature derivative,
K

ADIFOR
18312.5474227 17468.451137318312.5474227 17468.4511373

OpenAD/F
18312.5474227 17468.4511372

TAMC
18312.5474248 17468.4511392

TAPENADE
18312.5474227 17468.4511372

FD
18312.5269537 17468.4315994

PRD, basis truncation
 Issue: we would like to use high-order polynomials to represent non-linear relationships in the model.

But, even with the use of derivative information, the required size of the training set grows rapidly (curse
of dimensionality in spectral space)

 We use a heuristic: we rank uncertainty quantifiers by importance (a form of sensitivity analysis is already
available, for free!) and use an incomplete basis, i.e. polynomials of high degree only in variables of high
importance. This allows the use of some polynomials of high degree (maybe up to 5?)

 Several versions of the heuristic are available, we choose to fit a given computational budget on the
evaluations of the model to form a training set.

 In our first experiments, we use either a complete basis of order up to 3, or its truncated version allowing
the size of training set to be within 10-50 evaluations.

 An even better scheme - adaptive basis truncation based on stepwise fitting is developed later,
simultaneously with conditions for better algebraic form of multivariate basis,

PRD UQ, tests on subject models

 Model I, Matlab prototype code. Output of interest: maximal fuel centerline temperature.

 We show performance of a version with 12 (most important) uncertainty quantifiers. Performance of
PRD approximation with full and truncated basis is compared against random sampling approach (100
samples)*:

Sampling Linear
approximation

PRD, full
basis

PRD,
truncated
basis

Full model runs 100 1* 72* 12*

* derivative evaluations

required ~150% overhead

Full model runs 100 1* 72* 12*

Output range, K 2237.8
2460.5

2227.4
2450.0

2237.8
2460.5

2237.5
2459.6

Error range, K -10.38
+0.01

-0.02
+0.02

-0.90
+0.90

Error st.
deviation

2.99 0.01 0.29

Uncertainty quantification, tests on subject models

 Model II, MATWS, subset of SAS4A/SASSYS-1. We repeat the analysis of effects of uncertainty in an
accident scenario modeled by MATWS + GoldSim. The task is to estimate statistical distribution of peak
fuel temperature.

We reproduce the distribution of the outputs correctly;

regression constructed on 50 model

evaluations thus replaces analysis

with 1,000 model runs. We show

cumulative distribution of the

peak fuel temperature.peak fuel temperature.

Note that the PRD approximation

is almost entirely within the 95%

confidence interval of the

sampling-based results.

PRD, selection of better basis
 We inherited the use of Hermite multivariate polynomials as basis from a related method: Stochastic

Finite Elements expansion.

Hermite polynomials are most appropriate where the statistical distribution of inputs are known (and
normal!) In practical tasks, this is not the case.

While performance of PRD so far is acceptable, Hermite basis may not be a good choice for constructing
a regression matrix with derivative information; it causes poor condition number of linear equations (of
the Fischer matrix).

 Hermite polynomials are generated by orthogonalization process, to be orthogonal (in probability
measure ρ; Gaussian measure is the specific choice):   dAAAA )()()(measure ρ; Gaussian measure is the specific choice):

We formulate new orthogonality conditions:

and apply Gramm-Schmidt.

 The real advantage of using the orthogonal basis becomes apparent in combination with basis truncation
procedures. We used a standard (Matlab) stepwise fitting function, based on t-test of a hypothesis that a
particular polynomial should not be present in the expansion. With the orthogonal basis, this resulted in
improvement of several orders of magnitude!




 jhhj dAAAA )()()(

 











 



 ih

m

i
i

h

i

j
hj dAA

AA
AA 


)(

)()(
)()(

1

PRD, selection of better basis
 Construction of the basis with correct orthogonality properties eliminates ill-conditioning in the

regression procedure, leading to modest improvement in performance. Other methods of improving the
conditioning of the regression matrix are intrusive, and sub-optimal.

 The real advantage of using the orthogonal basis becomes apparent in combination with basis truncation
procedures. We use a standard (Matlab) stepwise fitting function, based on t-test of a hypothesis that a
particular polynomial should not be present in the expansion. With the orthogonal basis, this resulted in
improvement of several orders of magnitude!

 Our work on basis selection can be viewed as an example of modifying the regression procedure for the Our work on basis selection can be viewed as an example of modifying the regression procedure for the
situation where the training set is not only very small, but is presented in a non-standard format (in a
distributed manner, under a mapping, augmented with additional information such as gradients).

PRD, adaptive (stepwise fitting) basis truncation
 We use a stepwise fitting procedure (based on F-test):

1. Create a surrogate model as an expansion in the starting set of polynomials

2. Add one (estimated as most likely) polynomial to the set. An expansion term currently not in the model
is added if, out of all candidates, it has the largest likelihood that it would have non-negligible coefficient
if added to model.

3. Remove one (estimated as least likely) polynomial from the set. An expansion term in the model is
removed if it has the highest likelihood to have negligible coefficient.

 It is possible to truncate the model starting with a full basis set (of fixed maximal polynomial order) or
from an empty basis set (all polynomials of fixed maximal order are candidates to be added).

PRD, need for dimensionality reduction

 As designed, nuclear reactor simulation models may include hundreds of parameters in the input file.
Right now the practical limit is dimension 10-40 with basis of order 2-3, even with improved use of
sample data, such as derivatives. To reach dimension >1000, PRD has to be used together with some
form of complexity reduction for the representation.

 SVD-based reduction methods are variously known as Principal Component Analysis, PCA; Proper
Orthogonal Decomposition, POD; method of snapshots. They have been successfully applied to complex
models, usually to reduce the dimension of the model state. Note the difference: we can only manipulate
the input set to obtain a reduced list of variables. We can then use regression (with, or withoutthe input set to obtain a reduced list of variables. We can then use regression (with, or without
derivatives) to find coefficients in the expansion:

kmkm

T
q qq

RRyRx

xyyx



 

,,

)()(

DWPOD, dual-weighted POD

 We can achieve better reduction, if we take into account varying importance of components of data set
for the reproduction of the output in the reduced model. In dual-weighted POD setup, we assign weights

to each observation in the training set, and weights to each component of an
observation; .

The optimization problem is:

 
 

 
n

i A

k

j
Ajiii XXw

n 1

2

1

,
1

min 

niwi ..1,  mjA jj ..1, 
)(,)(ijj wdiagWAdiagA 

with the equivalent eigenvalue problem:

 Approach I: use sensitivity-based weighting:

Observation: at this point, metric is important. Weights matter less.

iii
T AAXWX  

iw

])([

]))([(

i
i

xkk

dx
xdJEw

xJEdiagcIA



 

DWPOD, dual-weighted POD

 We compare error produced by PRD models without reduction (basis of order 1 and 2 used, order 3
cannot be completed in reasonable time).

Sample
size

Error
mean

Error
st. dev.

PRD, dim 66,
approximation order 1

2 -1.905 7.238

PRD, dim 66, order 2 68 -0.219 1.259

*40 vs. 68 is not a huge advantage yet.

But using 20 points instead of 40 already produces

reasonable results.

PRD, dim 66, order 2 68 -0.219 1.259

DWPOD + regression,
dim 4, order 3

14 (40*
for DW)

-0.015 0.486

UQ and complex simulation models, conclusions

 Tools needed for UQ within larger code development process, in principle, exist. Many of them
are recently developed (by us), and need extension to high scale\testing.

 In terms of error in UQ conclusions we already progressed from 10% (sensitivity-based) to 1%
(polynomial regression with derivatives), to 0.1% (adaptively selected polynomial basis for
regression, model reduction, enhancement with stochastic processes) while keeping number of
model evaluations <100, sometimes <10.

 In terms of uncertainty complexity and dimension we progressed from 1-10 non-interacting
sources (appears to be a norm for a nuclear reactor proof-of-concept description) to ~10 sources
(Galerkin methods, PRD, advanced sampling techniques), to ~100 sources (our current work) …
to 1,000,000 sources ?

 AD has its own progress track. The results are very encouraging.

 First applied results of our UQ methodology are impressive, well-received by applied area
specialists.

Polynomial Regression with Derivative
Information for Uncertainty Analysis of Complex

Simulation Models

Thank you for your attention!

Situation on uncertainty in Nuclear Engineering
 The uncertainty NE applications is crucial, because the ultimate aim of model is approval by NRC, which

needs “error bars”

 Given the fact that high performance codes are developed with physics quality in mind, in the end the
preferred methods is often (Monte Carlo) sampling. Slow in high dimensions, particularly in comparison
to using adjoint sensitivity information.

 Adjoint sensitivity approaches are used, but typically within older codes. To our knowledge, more so for
neutronics applications, less so, possibly incomplete, for thermohydraulics and stuctural problems.

 Uncertainty analysis (and, speaking wider, parametric dependence analysis) has multiple uses, including
guiding the existing sampling-based methods.

Surrogate modeling helps verification and validation
 Verification and validation by sampling uses only model state and statistical distribution of inputs. High-

order interpolation also uses sensitivities, estimates of relative importance.

 In principle, derivative information is not the only intermediate result that can be fitted. Computational
speed increase provided by our suggested method may rely on operations other than adjoint
differentiation.

 For example, tracing (physically-meaningful) energy balances is possible.

 Training set used to build the interpolation, and the interpolating basis can be chosen goal-oriented to a
feature of interest.feature of interest.

 In conclusion: high-order interpolation can be used instead of the “real thing” in verification and
validation. We can make it a very high-resolution copy of a particular aspect of the “real thing”. And at a
fraction of the cost.

 Such features of interest include: selectivity, accuracy, non-linearity, range of response, repeatability,
equilibrium states, well-posedness, lack of chaotic behavior.

PRD, computation of derivatives
 There is a possibility that some calculations in the model are inherently non-smooth

Some of the reasons are:

- incomplete convergence of a differentiable structure

- a switch between branches in the control structure of the code

- very stiff numerical effect

The options are:

- build a smoothing interpolation and differentiate that- build a smoothing interpolation and differentiate that

- re-design just this model part to be smooth

- re-design just this model part to add capability to output it own (discontinuous?) derivative
approximations, maybe by finite differences

 Detection of such places in the model flow requires automatic tracing tools. Fortunately, AD tools have
this capacity (with some development effort required to search for specific features).

