
1 of 7

AGENT-BASED FORWARD ANALYSIS

Ryan Kerekes, Yu (Cathy) Jiao, Mallikarjun Shankar, Thomas Potok, and Rick Lusk
Oak Ridge National Laboratory

Oak Ridge, TN

ABSTRACT

We propose software agent-based “forward analysis”
for efficient information retrieval in a network of sensing
devices. In our approach, processing is pushed to the
data at the edge of the network via intelligent software
agents rather than pulling data to a central facility for
processing. The agents are deployed with a specific
query and perform varying levels of analysis of the data,
communicating with each other and sending only
relevant information back across the network. We
demonstrate our concept in the context of face
recognition using a wireless test bed comprised of PDA
cell phones and laptops. We show that agent-based
forward analysis can provide a significant increase in
retrieval speed while decreasing bandwidth usage and
information overload at the central facility.

INTRODUCTION

The military is faced with the problem of information
overload on a daily basis. Massive amounts of data in
such forms as intelligence updates, field reports,
surveillance video, and battlefield imagery are generated
continually by numerous heterogeneous sources. The
ability to retrieve the right information from this
mountain of data may be crucial to victory. Robust,
intelligent software systems are needed to reduce data
redundancy and answer complex queries by retrieving
and fusing data in a distributed manner.

 Notice: This manuscript has been authored by UT-Battelle,
LLC, under contract DE-AC05-00OR22725 with the US
Department of Energy. The United States Government retains
and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes.
Research sponsored by the Laboratory Directed Research and
Development Program of Oak Ridge National Laboratory
(ORNL) managed by UT-Battelle, LLC, for the U.S.
Department of Energy under Contract No. DE-AC05-
00OR22725.

Because overwhelming quantities of data are generated
remotely, distributed data mining algorithms would
provide answers more quickly by taking advantage of
the local processing capability of the data-generating
devices. In many cases, the data is too large to be sent to
a centralized location in real time due to bandwidth
limitations. Thus, forward analysis, or pushing
computation to data, would enable real-time analysis of
distributed image and video data and reduce the amount
of data that is sent back across the network. In other
words, the system could send back only a few candidate
needles rather than the entire haystack.

In this paper, we propose an agent-based forward
analysis approach for distributed data mining and
retrieval. Agent-based techniques are well-suited for
distributed data mining and forward analysis. First, the
autonomous nature of software agents leads to increased
system robustness. Second, the existence of agent
platforms enables fast system design, development, and
deployment. Third, mobile agents can hop from device
to device to carry out non-predefined tasks.

The agents in our proposed system are equipped with the
capability to analyze data as well as to collaborate with
other agents toward a goal-driven solution. Agents are
given tasks of varying complexity depending on the
processing capability of the target device. The system
thus uses the agent paradigm to push computation
toward the edge of the network in order to retrieve
relevant information while decreasing bandwidth usage.

We use a newly developed mobile agent platform for
implementing our agent-based system and providing a
means for proof of concept. We employ a wireless test
bed consisting of laptops and PDA cellular phones for
hosting the software platform. Our platform is Java-
based, which provides a certain level of device
independence to mitigate the problems introduced by
device heterogeneity.

In order to demonstrate the feasibility of the proposed
approach, we use the example of distributed face
recognition. We pose the problem in the following
context: enabling a commander to initiate a search-by-
example query over a large number of face images

2 of 7

captured by and stored on devices in the field in order to
discover whether any device has photographed a
particular suspect. We employ computationally efficient
correlation filter techniques to analyze face images
stored on the remote devices. Our agent-based
computational scheme is organized hierarchically;
specifically, agents at the very edge of the network are
given lightweight processing tasks such as parsing the
metadata associated with images, while intermediate
agents perform image analysis to look for a particular
person. We evaluate system performance in terms of
response time in answering data mining queries, and we
show that our distributed agent-based architecture
outperforms a centralized solution.

The remainder of this paper is organized as follows. We
first provide some background information on agent-
based systems. We then provide a review of correlation
filtering techniques used in our experiments. Next, we
present our technical approach to agent-based data
retrieval, including the different types of agents used in
the approach. We follow by describing our experimental
setup for demonstrating our proposed system, including
our mobile agent framework for heterogeneous mobile
devices, and we then present some results achieved by
the system. We close with concluding remarks.

BACKGROUND

Several mobile agent-based solutions to data processing
and retrieval problems have appeared in the literature.
Most of these focus on either reducing power and
bandwidth requirements or distributing existing
algorithms for speed and efficiency. For example, Tei et
al. [1] proposed a mobile agent system for location-
specific data retrieval in which agents focus on choosing
optimal geographic locations for reducing the amount of
data transfer in an ad-hoc mobile network. Wang and Qi
[2] proposed a mobile agent-based method for
decentralizing the Bayesian source number estimation
algorithm in a sensor network for increased energy
efficiency.

Many research projects, including the two examples we
just described, have demonstrated the benefits of using
mobile agents in distributed, wireless computing by
using simulations. The feasibility of transferring such
systems from theory to realty remains questionable.
Concerns about the realism and stability of mobile
agent-based solutions grow even stronger when the
target system is composed of heterogeneous devices.

Our focus in this paper is on introducing and
demonstrating the concept of agent-based forward
analysis. Thus, we do not focus on the algorithm or
power efficiency but rather on the feasibility of a real-
world mobile agent-based forward analysis system in
which agents can be dynamically created to employ
arbitrary data processing and analysis algorithms.
Moreover, we seek to provide a realistic proof-of-
concept demonstration of forward analysis on resource-
limited wireless devices, something which we believe to
be missing from the literature.

REVIEW OF CORRELATION FILTERS

In this section, we provide some background on
correlation filtering, an image analysis technique we use
in the implementation of our forward analysis concept.
Correlation filtering is a technique for image-based
pattern recognition whereby test images are compared to
a predetermined template in order to detect and locate
known patterns [3]. Variations on this basic method
have been successfully applied in many application
domains; some noteworthy examples include biometrics,
automatic target recognition (ATR), road sign detection
and optical character recognition (OCR). Properties
such as distortion tolerance, graceful degradation in the
presence of noise, and shift invariance make correlation
filters an attractive solution for many image analysis
problems.

An individual correlation filter is typically designed to
detect a particular pattern or set of patterns under a small
amount of potential distortion. Distortions may include
such geometric phenomena as rotation and scale change,
as well as more difficult-to-describe changes such as
thermal state (for infrared imagery) and facial expression.
Correlation filters are good at handling small amounts of
distortion but may fail if the appearance of the pattern
changes too much.

Many techniques have been proposed for designing
correlation filters, but most of these are based on
utilizing a set of training images that represent the
expected appearance variation of the pattern. The
interested reader may refer to the literature for details on
correlation filter design [4]. We use a design technique
called Optimal Tradeoff Synthetic Discriminant
Function (OTSDF) [5]. Once the filter has been
designed, it can be applied to any number of test images.

A correlation output is computed by correlating the filter
template with the input image, i.e., computing the dot
product between the two images at every 2-D shift;

3 of 7

specifically, the output [,]c m n is given by the following
equation:

 [,] [,] [,]

i j

c m n x i j h i m j n (1)

where [,]x m n is the test image and [,]h m n is the filter
template image. This operation normally has
complexity ()O mnpq , where the test image and filter
template are of size m n and p q , respectively;
however, this computation may be carried out in the
Fourier domain, which reduces the complexity to

(log)O mn mn . For small filter templates, however, it
may be computationally more efficient to use Eq. (1).
For pattern detection, the correlation output is typically
compared to a threshold at each location, and every
location where the output exceeds the threshold is
considered to be a detection.

TECHNICAL APPROACH

Our approach to mobile agent-based forward analysis
focuses on search-by-example queries. Specifically, the
user specifies certain query parameters and clicks a
button to initiate the search. A coordinating agent then
deploys several specialized agents to various devices to
find, process, and transfer relevant data back to the user.
The user is not concerned with the underlying agents,
but rather sees only the query parameters used and the
search results returned after the search is complete.

For our forward analysis experiments, we designed four
types of software agents, which we have given the

following names: (1) Data Finder agents; (2) Data
Processor agents; (3) Data Sink agents; and (4)
Commander agents. Each type of agent is designed with
particular hardware resources in mind; e.g, the
Commander agent uses a window for user interaction
and thus needs a large screen for optimal display.
However, the agents are not limited to a particular
hardware setup; moreover, since they are Java-based,
they can theoretically run on any machine with a
compatible JVM (although this does not take into
account the available processing resources for speed
considerations). We describe the roles of each agent
type below.

Data Finder: This agent is deployed to devices on which
data is stored and acts as a preliminary filter for the data.
The agent will browse through the available data and
look specifically at the metadata associated with each
data unit (e.g., a text report or an image). This metadata
is in text format and includes time and date, GPS
location (i.e., where the device was located when the
data was generated), and the owner or group associated
with the device (e.g., a particular military unit). If the
user specifies location and time ranges in the query, then
the Data Finder agent will carry these query parameters
as it jumps to the device and apply them to each data
unit. It will then send only the matching data to a Data
Processor agent for further analysis. The Data Finder
agent may select an associated Data Processor agent at
random, or this association may be specified by the user
depending on the system setup.

Data Finder agents (performs
lightweight data analysis)

Data Processor agents (performs
complex data analysis)

Data Sink agent (receives retrieved data)
Commander agent (initiates query)

Figure 1. Illustration of experimental setup showing device hierarchy and associated software agents.

laptop

laptop laptop

PDA phone PDA phone PDA phone

= agent

4 of 7

Data Processor: The role of this agent is to receive data
from the Data Finder agent and carry out analysis of the
data itself (rather than only the metadata) relative to the
user-specified query. For text data, this processing
might involve various text analysis algorithms such as
TF-ICF [6], latent semantic analysis (LSA), natural
language processing (NLP), genetic algorithms [7], etc.,
while for image data there exist a wide variety of
algorithms for image analysis. In our experiments, we
focus on image-based face recognition, and we employ a
correlation filter-based method for analyzing the images
and discriminating between faces. Correlation filters
have been shown to perform well in various biometric
tasks including face recognition [8-9], and they are
known to be computationally efficient, making them
well-suited for use in an agent-based forward analysis
system.

Each Data Processor agent is equipped with one or more
correlation filters, specialized image templates designed
to recognize the face of a specific person and reject all
others. Thus, Data Processor agents are tasked with
finding specific persons among the data received from
the Data Finder agents. The agent applies the filter to
each incoming image and compares the output to a
threshold, and if the output exceeds the threshold at any
point, the image is declared a match and sent to the Data
Sink agent. Each correlation filter template is typically
grayscale and is equal in size to that of the pattern (e.g.,
the face) to be recognized. Thus, if faces are on average
100x100 pixels in size, each filter will be approximately
10KB in file size. This data is transported via the Data
Processor agent to the machine on which the agent will
run.

Data Sink: This agent acts as an interface between the
Data Processor agents and the Commander agent. The
tasks of this agent are (1) to receive data from all Data
Processor agents and place them in a particular storage
location, and (2) to send received data from a particular
search to the Commander agent for display to the user.
The reason for giving this task to a separate agent rather
than including it in the Commander agent’s tasks is that
the user may desire to store data and perform searches
on two separate machines. For example, the user may
wish to operate at a small terminal machine, while a
large file storage server is available elsewhere to store
the large amounts of retrieved data.

Commander: This agent has two main roles: user
interaction and agent coordination. First, the
Commander agent provides a window whereby the user
may initiate queries in the agent system and view search
results. This window also allows the user to select

various settings for the query, such as which agent hosts
in the system will accept different types of processing
agents.

Second, the Commander agent coordinates the
deployment of the other necessary agents upon initiating
a query. This deployment happens in three stages: (1) a
Data Sink agent is deployed; (2) Data Processor agents
are deployed and subsequently locate the Data Sink
agent; (3) Data Finder agents are deployed and
subsequently locate the Data Processor agents. Once all
the agents have been successfully deployed, the
Commander agent waits for messages from the Data
Sink agent, which represent the search results.

The agents communicate in a hierarchical fashion as
follows. Data Finder agents locate data at the edge of
the network and send the data to one or more Data
Processor agents. The Data Finder agents thus need not
maintain connectivity to central machines, but rather
only to those machines on which their associated Data
Processor agents are located. The Data Processor agents
send data to the Data Sink agent, which in turn
communicates search results to the Commander agent.
This communication scheme is illustrated in Fig. 1.

The usefulness of this communication scheme can be
motivated by the following example. Suppose that
soldiers in the battlefield are equipped with agent
platform-enabled devices. A commander may want to
search the devices for reports and/or relevant image data,
but not all soldiers may be within communication range
of the central facility at all times. However, other
communication devices may be placed strategically
between the two (e.g., at an outpost), providing a link
between the center and the edges of the network. Data
Processor agents could thus be deployed to these
intermediate machines, creating a robust and efficient
data flow mechanism.

EXPERIMENTAL SETUP

In order to demonstrate our forward analysis proof of
concept in a relevant environment, we need to have an
agent platform in place. JADE-LEAP is a well-known
mobile agent platform that supports handheld devices
[10]. There are reports of varying degrees of success in
using JADE-LEAP for the development of mobile agent-
based systems [11, 12]. However, JADE-LEAP has only
three configurations: j2se, pjava, and midp. The
handheld devices in our testbed use the J2ME CDC
configuration [13], which is not supported by JADE-
LEAP.

5 of 7

We developed a new Java-based mobile agent
framework, which we refer to as the Knowledge
Acquisition Ubiquitous Agent Infrastructure (KAUAI).
The design of KAUAI aims at high performance and
reliability. This framework runs on both standard J2SE
JVMs and a mobile JVM for Windows Mobile called
CrE-ME developed by NSIcom. Because CrE-ME does
not provide all the functionality of J2SE, it requires the
Java code to be compatible with Java 1.3; for this reason,
we designed the platform to meet Java 1.3 specifications.

The platform allows agents to be deployed at runtime to
any remote machine running an agent host. A “locator
daemon” is used to store the location and contact
information (IP address and port) of each agent and
agent host in the system. Any agent may communicate
directly with any other agent after requesting the
appropriate contact information form the locator daemon.
Also, agents may move from one host to another at any
time provided that they update the locator daemon of the
move. A screenshot of the KAUAI agent host GUI is
shown in Fig. 1. This GUI allows the user to select an
agent type and a destination host for deployment.

We setup our proof of concept experiments using two
AT&T® Tilt PDA phones running Windows Mobile® 6
with the CrE-ME JVM (referred to as Phone 1 and
Phone 2) and an Apple® MacBook Pro laptop with a 2.4-
GHz Intel Core 2 Duo processor running Mac OS X
Leopard®. All devices were connected via an 11Mbps
wireless network. We instantiated one Commander
agent, one Data Sink agent, one Data Processor agent,
and two Data Finder agents. The Commander, Data
Processor, and Data Sink agents were located on the
laptop, while each Data Finder agents was dispatched to

a different phone. A screenshot of the agent platform
running an agent on one of the phones is shown in Fig. 2.

Each phone was loaded with a set of face images and
associated metadata. The images ranged in size from
96x120 pixels to 160x120 pixels. Phone 1 contained
100 images, while Phone 2 contained 96 images. We
initiated 4 different queries, referred to as A, B, C, and D.
Each query specified a single person (i.e., a correlation
filter designed for that person), a time range, and a
location range. The Data Finder agents were responsible
for matching the location/time portion of the query (as
described earlier), while the Data Processor agent was
responsible for the face matching portion. Table 1
shows the actual percentage of matching data items for
each query, both for the Data Finder (DF) portion
separately and for the whole query.

Table 1. (U) Percentage of data relevant to each test
query, both on the individual devices and overall.

Query Query
part

Phone 1 Phone 2 Overall

DF 0% 17% 9% A
Whole 0% 0% 0%
DF 20% 33% 27% B
Whole 20% 0% 9%
DF 40% 50% 45% C
Whole 20% 0% 9%
DF 60% 67% 64% D
Whole 20% 0% 9%

Figure 2. (U) Screenshot of KAUAI wireless mobile
agent platform hosting a Data Finder agent on an

AT&T® Tilt PDA phone.
Figure 1. (U) Screenshot of GUI for interacting with

KAUAI agent host.

6 of 7

RESULTS

We measured the response time for each of the four
queries, i.e., the amount of time between initiating the
search and having received all the search results. This
quantity includes the time taken to deploy the Data
Processor and Data Finder agents, which we observed to
take approximately 4s of the total search time for each
query.

Response times for each query are shown in Fig. 3; we
compare our distributed agent-based solution to a
centralized solution in which all data is sent back to the
central facility. We make two observations from this
data: first, the distributed solution outperforms the
centralized solution in terms of speed for each query;
second, the speed of the distributed search depends on
the amount of query-relevant data in the system (refer to
Table 1). This second phenomena is due to the fact that
in the distributed solution, only data that matches the
query in the Data Finder agent is sent across the network,
which turns out to be the primary bottleneck in the
wireless network environment. Thus, the agent-based
forward analysis approach can significantly reduce the
network transfer volume and consequently the search
time.

In both the centralized and the distributed solutions, we
observed that the search results matched the
corresponding query exactly, i.e., only the correct face
images were returned, and only those matching the
specified time/location range. This result indicates that
the agent-based solution was able to reduce the search
time without sacrificing search accuracy, which is to be
expected since the agents employed the same processing
algorithms as the centralized solution but at a remote
processing location.

0

5

10

15

20

25

A B C D

Query

R
e

tr
ie

v
a

l
ti

m
e

 (
se

c
)

Distributed

Centralized

Figure 3. (U) Comparison of query times for centralized
and distributed approaches for the four queries A, B, C,

and D (see Table 1). Each value is the average over four
trials.

CONCLUSIONS

We proposed the concept of agent-based forward
analysis for data analysis and retrieval in a
heterogeneous network of sensors and storage devices.
We demonstrated this concept using a platform-
independent mobile agent framework developed
specifically for this task. Results showed that our
proposed method outperformed a centralized solution in
terms of speed while retaining the same search accuracy.
We believe that for larger-scale problems, i.e., more data
distributed over a greater number of devices, the
performance improvement realized by agent-based
forward analysis would be greater for two main reasons:
(1) increased parallelism from multiple devices, and (2)
diminished relative overhead in deploying agents.

REFERENCES

[1] K. Tei, N. Yoshioka, Y. Fukazawa, and S. Honiden,

“Using mobile agent for location-specific data
retrieval in Manet,” Intelligence in Communication
Systems, Springer, pp. 157-168, 2005.

[2] X. Wang and H. Qi, “Mobile agent based
progressive multiple target detection in sensor
networks,” ICASSP’04, vol. II, pp. 285-288, 2004.

[3] B. V. K. Vijaya Kumar, A. Mahalanobis, and R.
Juday, Correlation Pattern Recognition, Cambridge
University Press, 2005.

[4] R. Kerekes and B. V. K. Vijaya Kumar, “Selecting a
composite correlation filter design: a survey and
comparative study,” to appear in Optical
Engineering, vol. 47, no. 6, 2008.

[5] Ph. Refregier, “Filter design for optical pattern
recognition: multi-criteria optimization approach,” Opt.
Lett., vol 15, pp. 854-856, 1990.

[6] J. W. Reed, Y. Jiao, T. E. Potok, B. A. Klump, M. T.
Elmore, A. R. Hurson, “TF-ICF: a new term

7 of 7

weighting scheme for clustering dynamic data
streams,” ICMLA’06, pp. 258-263, 2006.

[7] R. M. Patton and T. E. Potok, “Characterizing large
text corpora using a maximum variation sampling
genetic algorithm,” GECCO‘06, pp. 1877-1878,
2006.

[8] B.V.K. Vijaya Kumar, M. Savvides, K.
Venkataramani, and C. Xie, “Spatial Frequency
Domain Image Processing For Biometric
Recognition,” Proc. 2002 IEEE International
Conference on Image Processing (ICIP), pp. 53-56,
2002.

[9] M. Savvides, R. Abiantun, J. Heo, S. Park, C. Xie
and B.V.K. Vijayakumar, “Partial & Holistic Face
Recognition on FRGC-II data using Support Vector
Machine Kernel Correlation Feature Analysis,”
Proc. CVPRW’06, p. 48, 2006.

[10]G. Caire, “LEAP User Guide,”
http://www.iro.umontreal.ca/~dift6802/jade/doc/LE
APUserGuide.pdf.

[11]R. Jedermann and W. Lang. “Mobile Java Code for
Embedded Transport Monitory System,” Proc.
Embedded World Conference 2006, p. 771-777.

[12]A. Moreno, A. Valls, A. Viejo, “Using JADE-LEAP
to Implement Agents in Mobile Devices,” Research
Report 03-008, DEIM, URV.

[13]http://java.sun.com/javame/downloads/index.jsp

