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Abstract—A significant challenge in the distribution of goods is 

assessing the potential threat that an individual shipping 
container poses.  Due to the high volume of shipped goods, a 
primary concern is balancing accuracy and container scan time.  
The application of information fusion to the problem enables 
automated threat determination and the presentation of relevant 
data to an operator, in a decision support capacity, in order to 
maintain a sufficient level of processing. This paper outlines an 
approach to container threat assessment that combines data from 
multiple sources in order to reliably score the likelihood that a 
given container holds a threat.  Fused data is also leveraged as a 
tool to optimize the routing of containers through a scanning 
system comprised of multiple data acquisition stations and 
providing data in multiple modes.  Furthermore, we propose 
methods for the consolidated presentation of fused data to an 
operator in order to both minimize the time expended in 
container evaluation and maximize the accuracy of the 
assessment. 
 

Index Terms—Bayesian networks, Information fusion, 
Intelligent systems, Threat analysis 
 

I. INTRODUCTION 
S countries are forced to account for the threats posed by 
the tactics of small, subversive groups operating within 

their borders, they are becoming more aware of the 
vulnerabilities in their shipping infrastructures [2].  It is 
desirable to have a high degree of confidence that the contents 
of each shipped package or container pose no threat to various 
personnel or resources in the freight industry, or to shipping 
customers. The primary barrier to the analysis of each shipped 
container is the considerable expense of time to inspect the 
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contents.  For example, the throughput of air cargo shipped 
each day would be reduced to 4% of its current volume if 
manual inspections of each cargo container were introduced 
into the processing flow [1].  In response to the contradictory 
priorities of both threat assessment and efficiency in container 
processing, it has become a high-priority need to be able to 
rapidly discriminate between harmful and benign packages.  

 
This research addresses the need for a technology that can 

combine information from disparate data sources in order to 
provide a reliable threat assessment for a shipping container, 
and can present the fused data such that an operator can 
rapidly discern its threat potential.  Shipped containers 
inherently include different modes of data that characterize 
their contents and provide opportunities for analysis.  Textual 
data in the form of manifests or receipts can provide 
information about the expected contents of the container and 
other attributes such as expected weight, shipping source, and 
destination.  Numeric data, such as the measured weight or 
detected radiation counts, are typically available during the 
processing of shipped containers and provide a basis for 
comparison to the text data.  Image data provide views of the 
container after a particular imaging technology has been 
applied.  For each of these source data modes, analysis 
technologies exist that can highlight those features that are of 
interest in containers.  The goal of this research is to merge the 
relevant features, surfaced during data analysis, to provide an 
accurate threat assessment for an operator. 

 
Section II provides a summary of the related work in this 

field.  Section III describes in detail the methodology used to 
both fuse data and present that data to the operator.  Section 
IV contains the results of implementing a simulation that 
demonstrates these technologies and gives an analysis of the 
resultant product.  Section V concludes the paper..  

 

II. RELATED WORK 
Information fusion (IF) is defined as the combination of 

data from disparate sources to produce an outcome that is 
superior to any provided by an individual source.  A superior 
outcome typically includes an improvement in accuracy, 
higher confidence through complementary information, or 
improved performance in the presence of countermeasures [9].  
Our research merges multi-modal, multi-source data in order 
to ascertain the presence of a threat in a shipping container.  In 
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this section, the relevant prior work in the fields of 
information fusion and container threat assessment is 
presented. 

 
IF is a complex process that involves the acquisition of raw 

data, the transformation of that data into a suitable format, and 
the merging of transformed data into a composite form that 
highlights interesting underlying features.  These coarse stages 
in the IF process are often referred to as the levels of 
information fusion [16].   Sensor-level fusion is the level at 
which relevant data is extracted from the source signal.  
Feature-level fusion is the combination of data to produce a 
composite feature vector that characterizes the object under 
test.  Decision-level fusion is the layer that provides a 
projection of a future state of the object based on the feature 
vector provided, and is the information presented to an 
operator to facilitate a human decision.  Related to these 
different levels, Dasarathy [17] characterized IF in terms of 
the input/output characteristics of a given fusion function: 
Data in-Data out, Data in-Feature out, Feature in-Feature out, 
Feature in-Decision out, and Decision in-Decision out.  Thus, 
an IF architecture is simply the combination of these different 
types of fusion functions to produce a holistic decision support 
IF system. 

 
The Joint Directors of Labs (JDL) have developed the most 

prominent model of information fusion.  The JDL fusion 
model and its revisions [8] [12] [13] focus on maximizing the 
automation of fusion.  It breaks data fusion into five levels, 
each of which further refines the data from the acquired state 
to a form that both adequately represents the entities and their 
environment and is actionable. Much of the literature 
surrounding IF focuses on the various levels of the JDL model 
to create and optimize algorithms that merge sensor data in a 
complex and dynamic space.  Automated target location, 
identification, and tracking are central themes in this type of 
fusion. 

 
Situational awareness (SA) is an extension of IF which 

focuses on incorporating human decision-making in the IF 
process. Endsley’s model of SA [11] defines three levels that 
include Perception of the various relevant elements in the 
environment, Comprehension of the patterns that are 
recognized through analysis or evaluation, and Projection of 
the likely future states based on the understanding of the 
current state. The levels proposed in the SA model are 
analogous to the sensor, feature, and decision levels described 
in [16].  SA systems are by design semi-automated and allow 
for a Human in the Loop (HIL) to make decisions.  The IF 
framework proposed in this research is likewise intended to be 
an HIL system; providing decision support to an operator that 
must analyze thousands of containers per day in a typical 
shipping pipeline. 

 
The operational concepts for container processing systems 

are consistent with the SA model.  These systems are expected 
to provide decision support to an operator in such a manner 

that maximizes accuracy and efficiency [14].  The physical 
analysis of shipping containers is a unique problem due to the 
large size of the containers, the heterogeneous nature of its 
contents, and the non-uniform arrangement of objects.  Work 
has been done to address the challenges shipping containers 
pose to imaging systems [18] [10], or to fuse information to 
provide SA at container processing facilities [20].  However, 
little work has been done to apply IF in order to assess the 
threat associated with individual containers.   

 
Sokol [19] proposed a generic framework for transforming 

heterogeneous data associated with shipping companies and 
containers into a knowledge base that that identified entities 
and their relationships.  The work focused on the analysis of 
raw text to identify patterns and inconsistencies in extracted 
entities and relationships.  However, to our knowledge, no 
work has been done to provide a decision-level fusion model 
for data associated with shipping containers in order to 
optimize routing through a system or produce a reliable multi-
threat assessment. 

III. METHODOLOGY 
This section describes the technical approach to applying 

decision-level information fusion to the problem of container 
threat assessment.  As a precursor to identifying threats in 
containers, those threats must be itemized and organized such 
that a series of discrete tests may provide clues to their 
presence.  Section A describes the system and data that were 
considered and Section B outlines the taxonomy of threats that 
were addressed in this research.  Section C details the methods 
used in constructing the probability network for threat 
assessment.  Section D addresses the specific issue of 
presenting the fused data to minimize the assessment time for 
an operator.  

A. System Architecture 
This research is predicated on a multi-faceted container 

analysis system comprised of interrogation devices, passive 
detectors, and electronic access to both the container’s 
manifest and a government program similar to the Known 
Shipper Database [7].  Thus, a variety of data modes are 
expected to be available for analysis including scanned 
images, sensor readings, and electronic text documents.  
Small-scale instances of this type of system are currently 
available commercially, and programs are underway to 
construct large-scale multi-modal container scanning and 
detection systems to meet the needs and interest expressed by 
government leaders.  The thrust of this research is to provide a 
methodology for decision-level fusion of these data to provide 
a reliable container threat assessment. 

 
Any container analysis system that incorporates multiple 

approaches to acquiring and analyzing data must also have an 
approach for merging the results of those independent 
analyses in order to present a consistent assessment to an 
operator.  The information fusion system designed for this 
research assumes the existence of a support framework that 
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includes acquisition of data from a container measurement or 
scanning devices (Sensor-level fusion), and the analysis of the 
acquired data item to produce a feature vector (Feature-level 
fusion).  Information is fused at a high level and incorporates 
the various feature vectors uniquely produced for each data 
source as depicted in Fig. 1. This architecture is based on 
Endsley’s model of SA [11] with stages for Perception, 
Comprehension, and Projection.  The focus of this work is the 
Projection stage – using extracted feature sets to predict the 
presence of a threat through decision-level information fusion. 

 

 
Fig. 1 Container Analysis Fusion Architecture 

 
As a container is routed through the various interrogation 

and measurement stations, data becomes available and added 
to the body of evidence with respect to any potential threats. 
The Perception stage of the architecture is the sensor-level 
fusion represented by the Data Source blocks in Fig. 1.  This 
stage is concerned with the acquisition of raw data in its native 
mode.  The data at this level is the images acquired from 
scanning devices, the raw text of the electronic manifest, or 
the measurement value from the radiation detector.  The 
acquired data is then transformed into a form suitable for 
fusion in the Comprehension stage.  This stage typically 
involves populating a set of pre-defined features based on 
algorithms run against the raw data.  For example, the average 
density of an object in an X-ray projection might be calculated 
and stored as a feature.  Similarly, the name of a shipper might 
be extracted from the electronic manifest and vetted against a 
collection of known shippers; the result of which could be 
stored as a feature.  The result of the Comprehension stage is 
the set of features pre-defined through the threat taxonomy 
(see Section B) as relevant in the threat assessment.  The set of 
features is the input to the Projection stage, where decision-
level fusion is implemented.  It is in the Projection stage that 
this research is focused and where the threat assessment 
framework (see Section C) is implemented. 

 
The decision-level fusion for shipping container processing 

developed in this research considers three modes of data from 
several different sources.  Each item of data considered for 
this research is derived from a data source through direct 
measurement, text entity extraction, or image analysis. Table I 
describes each data item used in this research, and the data 
source for the item.  The data items selected are intended to be 

representative of the types of data available for shipping 
container information fusion, as specified in [10]. 

 
TABLE I  

AVAILABLE SHIPPING CONTAINER DATA 
Data Item Description Data Source 
Container ID:  
The unique identifier for this container. 

Shipping 
Manifest 

Shipper Information:  
The name and address of the shipper. 

Shipping 
Manifest 

Destination Information:  
The name and address of the consignor. 

Shipping 
Manifest 

Commodity:  
A classification of the nature of the goods being 
shipped. 

Shipping 
Manifest 

Shipped Weight:  
The recorded weight of the container. 

Shipping 
Manifest 

Measured Weight:  
The weight as measured during processing. 

Scales 

Measured Radiation:  
Radiation levels detected during processing. 

Radiation Portal 

Measured Dimensions:  
The measured container dimensions. 

Container  
Pre-processing 

Raw Image:  
A digital image of the exterior of the container 
being processed. 

Container  
Pre-processing 

2-D Scanned Images:  
Two-dimensional images using X-ray or similar 
technology. 

Scanning Station 

3-D Scanned Image:  
Three-dimensional image using computed 
tomography (CT) or similar technology. 

Scanning Station 

 

B. Threat Taxonomy 
This research focuses on combining data to infer the 

presence of specific types of materials (e.g., explosives or 
radiological/nuclear) inside cargo containers, placed with the 
intent of transporting these materials illegally or inflicting 
damage or injury during transport.  In order to combine data 
successfully, an organization of threat data must be developed 
that enables the dissection of an overarching threat into finer-
grain components, and maps those components to the features 
provided in the Comprehension phase of the fusion 
architecture.  

 

 
Fig. 2 Taxonomy describing threats to shipping containers. 

 
Fig. 2 shows the abstract taxonomy that divides a threat into 

its compositional elements, called threat components, which, 
in the case of shipping containers, are distinct characteristics 
of the threat that may be acquired from a given container.  The 
threat components represent features, or pieces of evidence, in 
determining the existence of a threat. The presence of one or 
more of these components is determined by a threat 
component test, and provides evidence towards whether the 
higher order threat exists.  The threat component test is 
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typically accomplished through an appropriate data analysis or 
feature extraction method performed during the 
Comprehension phase. 
 

 
Fig. 3 Partial taxonomy of a notional explosives material threat. 
  

Fig. 3 illustrates the application of the abstract taxonomy to 
a concrete example: an explosives threat.  An “Explosives” 
threat means that the system should be focused on identifying 
the likelihood of explosive materials being present inside the 
shipping container.  In order to tune the fusion framework to 
this specific threat, “Explosives” must be represented in the 
taxonomy as a collection of threat components that are both 
relevant in identifying explosive materials and also available 
in the set of container data (see Table I).  For this example, a 
set of threat components associated with explosive materials 
would likely include features such as the shape or density of 
objects in the container, and whether the shipper of the 
container is known or trusted.  Each of these components is 
further described in terms of the threat component test that 
distinguishes whether the component has been detected.  For 
example, in the case of the “Explosives Shape” component, 
the discriminating test would be whether the image analysis 
software identified an object within the container that has a 
shape consistent with that of a commercially available 
explosives device.  

 
A particular threat has physical characteristics that can be 

detected through signatures and observables revealed during 
the various physical data acquisition processes. Threat 
components such as shape, density, and radiation levels are 
examples of such characteristics. Threats also have non-
physical characteristics that may be detected through acquiring 
more abstract attributes of the shipped container.  Data items 
that primarily can be gleaned from the manifest, such as 
shipper information and commodity, fall into this category. 
Both the physical and non-physical characteristics of threats 
are treated equally in the threat taxonomy.  The taxonomy 
structure does not attempt to convey significance of each 
threat component, as that is managed through the probability 
values developed for threat assessment. 

 
Organizing threats in terms of their components and 

associated component tests allows for a flexible taxonomy.  
Threat components can be added, removed or modified based 
on the testing equipment available, the analysis environment, 
or the types of expected threats.  In addition, this organization 
lends itself to driving the structure of the probability network 
used for threat assessment. 
 

C. Threat Assessment 
Determining the probability of a given threat requires 

combining the threat components into a mathematical 
framework such that the presence or absence of those 
components affects the likelihood that the threat exists.  In 
addition, the probability model for the threat and its 
components must tolerate data that is uncertain or unavailable.  
For example, a practical scenario in a container analysis 
system is one where a container’s manifest cannot be retrieved 
by the computer.  In such a situation, it is undesirable for the 
system to be unable to assess the threat for that container; 
rather, it should carry out the analysis with minimal loss in 
accuracy despite the now unavailable data source. 

 
Bayesian belief networks were selected as the mechanism 

for probabilistic threat assessment, and for modeling threats in 
terms of their components.  A Bayesian belief network (BBN) 
is a network of nodes connected by directed arcs.  Each node 
in the network represents a random variable in the model, and 
each arc signifies a cause-effect relationship between the 
variables.  Thus, there may be several arcs leading to or from 
any given node, but there can be no cyclic relationships.  The 
probability function associated with each node is the joint 
probability distribution of inputs to outputs.  BBN node values 
are represented as discrete variables, and so can accommodate 
both subjective and objective data.  They can adapt to an 
environment as data is processed, can infer unknown model 
elements based on known model elements, and perform well 
in the presence of uncertain or unavailable data [6]. 

 

 
Fig. 4 Design of the Bayesian network for assessing threat components. 
 

 
Fig. 4 depicts the design for determining the presence of 

each individual threat component.  The circles represent the 
random variable nodes in the BBN, and the directed arrows 
are the arcs that depict cause-effect relationships.  For each 
threat component, one or many detection methods may be 
available.  Each detection method performs more reliably 
under some conditions and less reliably under other 
conditions.  The BBN captures this uncertainty by accounting 
for the characteristics of the container that affect the accuracy 
of a given detection method.  For example, the type of 
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material inside the container greatly affects the accuracy of an 
X-ray transmission detection method.  A container packed 
densely with frozen foods is much more difficult to scan than 
a container packed sparsely with fresh flowers.  Similarly, for 
each detection method, there are container characteristics that 
impact the accuracy of the test.  The BBN accounts for this by 
using an intermediary node that summarizes the detection 
method’s accuracy based on the given conditions.  
 

Acquired data, in the form of raw text, images, and 
numerical measurements, are processed using state-of-the-
practice techniques to extract features and entities, and to 
make the determination of whether a threat component was 
detected.  The “Threat Component Detected” node has two 
states (True, False) and is the means for incorporating the 
results of the deterministic models into the overall model.  The 
BBN is designed such that findings are determined for both 
the “Detection Method Accuracy” and “Threat Component 
Detected” nodes for each processed container.  Once those 
nodes are established, the structure of the network allows for 
the propagation of belief to the “Threat Component Exists” 
node, which is also a two-state node (True, False).  The output 
of the threat component model is a level of belief, or 
probability, that the given threat component actually exists 
based on detection result and on the factors that are affecting 
the detection method accuracy.  This framework is applied to 
each threat component that has been identified for a threat, 
according to the taxonomy described in Section B. 

 
The uncertainty model associated with each threat 

component also provides an effective means for container 
routing.  Based on the input characteristics of the container 
(i.e., Accuracy Affecter nodes), detection method accuracies 
can be inferred.  Thus, a container may be routed through the 
system to maximize the likelihood that a given set of detection 
methods will yield correct results, and not false positives or 
false negatives.  For example, if a container analysis system is 
comprised of both an X-ray backscatter device and a neutron 
radiography device, how should an operator route the 
container for analysis?  The probability of an accurate reading 
is captured by each of the detection methods’ “Detection 
Method Accuracy” node in the uncertainty model.  Thus, the 
model provides an automated means to route containers to the 
systems that will yield the most accurate results given the 
container’s physical characteristics and scan time constraints. 

 
Once the likelihood of each Threat Component is 

determined, the second tier of the BBN (see Fig. 5) combines 
each component to determine the likelihood that the overall 
threat exists.  As with each threat component, the “Threat 
Exists” node is a two-state node (True, False) that reflects 
whether the system believes the threat exists based on the 
fusion of all of the information.  In addition to a True/False 
value, the BBN provides a probability, or degree of 
confidence, that the assessment is accurate.  The probability is 
useful in conveying to an operator the level of confidence that 
a particular threat exists. 

 
Fig. 5 Design of the Bayesian network for assessing overall threat. 
 

The use of container threat components in our design 
provides flexibility in combining data elements.  Consistent 
with the threat taxonomy, threat components are easily added 
to or removed from the BBN depending on the types of data 
sources that are available and the types of discrete tests 
performed on each extracted data item. 
 

D. Visualization and Data Presentation 
Visualization of threat probabilities is an important part of 

communicating potential threats to an end user.  In cases 
where the threat indicator is localized (e.g., a specific region 
of a container), it is important to convey the location of the 
threat relative to the overall cargo container.  From a data 
fusion standpoint, presenting all available relevant information 
in a clear, concise, and compact way is a key factor in 
maximally utilizing human expertise in a screening system. 

 
We developed a simple visualization technique to illustrate 

the presentation of threat information to a user.  This effort 
derives from previous work in data fusion and modeling and 
draws on the visualization capabilities provided by the widely 
used Visualization Toolkit (VTK) [4], an open-source 
software package developed by Kitware, Inc.  The visual 
presentation of three-dimensional image data highlights areas 
of interest within the scanned container that are consistent 
with signatures associated with threats.  In conjunction, a 
fading capability has been incorporated into the visualization 
to further distinguish objects of interest.  To demonstrate this 
approach, we present two views of the contents of a specific 
container.  Fig. 6 gives the user an idea of the overall content 
of a container densely stacked with material.  The white color 
is used to denote objects that were not determined to be 
suspicious when image analysis algorithms were applied.  Fig. 
7 shows suspicious material (regions with high threat 
probability) highlighted in red, while the surrounding benign 
material has been faded.   
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Fig. 6 3-Dimensional visualization of a shipping container. 
 

 
Fig. 7 Fading of characterized non-threat material. 

 

 
Fig. 8 Integrated visualization of volumetric and X-ray backscatter imagery. 
 

In addition to highlighting suspicious objects/areas within a 
three-dimensional space, it is desirable to present multiple 
imaging modalities simultaneously in order to minimize 
assessment time for an operator, and give a positional context 
for all two-dimensional images acquired in the assessment 
process.  Fig. 8 illustrates how multiple imaging modalities 
(e.g., backscatter and X-ray CT) may be combined into a 
single display for a comprehensive view of threat information.  
In this example, four simulated X-ray backscatter images are 

combined with the three-dimensional CT image presentation.  
The result is a visualization that gives the operator a context 
for the set of two-dimensional images provided, and also gives 
the depth and material highlighting capabilities associated 
with the 3-D image data. 
 

IV. IMPLEMENTATION 
An information fusion system for prototype container 

analysis was developed for this research.  The system includes 
an operator interface that provides a view into a notional 
container processing system, and a back-end simulation that 
represents the environment and systems used for container 
processing.  The software is written in the Java programming 
language and leverages the Netica libraries [3] for BBN 
implementation and the Visualization Toolkit (VTK) for 
image and volume visualization [4].   

 
The goal of the container threat assessment system 

prototype is to demonstrate how fused data can be presented to 
an operator, and how that presentation could expedite the 
analysis of the threat potential each container poses.  Fig. 9 
shows the developed operator interface.  The focus of the 
interface is the visualization that combines multiple imaging 
modalities in order to present all relevant imaging data 
simultaneously.   The resultant image view may be rotated or 
zoomed using the mouse or control buttons provided on the 
interface.  Also included is a space to present an image of the 
container as it was received in the shipping area.  This 
provides a context for the operator in discerning the size and 
shape of the package. 
 

Anomalies and threat assessments are elevated to the 
operator’s attention through colorful graphics.  The threat 
score is the probability of a given threat being present in the 
container, and is communicated through both a meter and a 
colored icon located in the southeast area of Fig. 9.  The threat 
score icon’s color maps to a 0.2 interval in the threat 
probability range, and is based on the Department of 
Homeland Security’s Color-coded Threat Level System [5].  
This provides the operator with an immediate visual cue of the 
potential for the threat to exist.  In addition, the results of tests 
associated with container attributes are visually presented to 
the operator in the form of green checkmark or red ‘X’ icons 
in the Container Details panel.  The icons reflect the success 
or failure of tests specific to a particular container detail.  For 
example, a green check beside the measured weight of a 
container indicates that the results of the tests associated with 
the weight of the container were favorable: the measured 
weight is consistent with the weight recorded on the manifest, 
and the weight is consistent with statistical data for that 
commodity type.  Based on the information presented, an 
operator chooses to clear the cargo, quarantine the cargo, or 
route the cargo for further processing at a downstream testing 
station.  A decision from the operator is required for each stop 
a container makes in the system. 
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Fig. 9 Container threat assessment operator interface. 
 

A System Viewer (located in the southwest corner of the 
interface) presents the system as a whole, including paths 
between testing stations and decision points. This gives an 
operator a context for the entire system, including all of the 
testing equipment available to consider in container routing.  
The presence of a container in a testing station is denoted by a 
yellow rectangle in the station.  A green rectangle identifies 
the specific container for which the operator is making a 
decision.  This view gives an operator a visual designation for 
the container being processed, the extent of data that has 
already been collected for the container, and the available 
options for routing the container through the system. 
 

V. CONCLUSION 
This research details an approach to the decision-level 

fusion of disparate information to produce an assessment of 
the presence of a threat in a shipping container.  Information 
fusion was achieved by leveraging Bayesian belief networks 
for probabilistic threat assessments and the by developing a 
novel approach to presenting multimodal image data.  A 
prototype system was developed to automate the information 
fusion and data presentation for a simulated container 
processing system.  The operator interface for this system 
maximizes the use of visual cues for the automated container 
threat assessment in order to minimize the time required for 
operators to digest the quantity of information and rapidly 
discern an appropriate response. 

 

 
 
The underlying Bayesian network used for threat 

assessment was intentionally designed such that its structure 
would mirror the taxonomy designed for a specific threat.  It is 
the definition of the taxonomy, in terms of threat components 
and associated tests, for each threat that is critical to the 
implementation of this framework.  The inherent consistency 
between the data organization and the probabilistic network 
allows for flexibility in terms of the taxonomy of threats.  The 
method easily accommodates multiple instances of both 
threats and threat components, and can be quickly tailored to 
the testing equipment available in local container processing 
environments.   

 
This threat assessment framework is currently designed to 

targets terror-oriented threats, but it is easily extended to 
support assessments for the presence of drugs, weapons, and 
other contraband provided that the threat has similarly defined 
components, such as shape and density characteristics.  The 
versatile nature of this approach has prompted us to pursue 
applications in areas outside of shipping container threat 
assessment, including threat assessment for cyber security 
systems and for modeling social stability.  Our future work for 
this research includes expanding it to these domains, and also 
validating the shipping container threat assessment model and 
architecture in an operational setting. 
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