
Modeling Success in FLOSS Project Groups 
Justin M. Beaver 

Oak Ridge  
National Laboratory 

P.O. Box 2008, MS-6085 
Oak Ridge, TN 37831 

865-576-0327 

beaverjm@ornl.gov 

Xiaohui Cui 
Oak Ridge  

National Laboratory 
P.O. Box 2008, MS-6085 

Oak Ridge, TN 37831 
865-576-9654 

cuix@ornl.gov 

Jesse L. St Charles 
Carnegie Mellon  

University 
Wean Hall 1327 
Pittsburgh, PA 
412-268-5866 

jstcharl@andrew.cmu.edu 

Thomas E. Potok 
Oak Ridge  

National Laboratory 
P.O. Box 2008, MS-6085 

Oak Ridge, TN 37831 
865-574-0834 

potokte@ornl.gov 

 

ABSTRACT 
A significant challenge in software engineering is accurately 
modeling projects in order to correctly forecast success or failure.  
The primary difficulty is that software development efforts are 
complex in terms of both the technical and social aspects of the 
engineering environment.  This is compounded by the lack of real 
data that captures both the measures of success in performing a 
process, and the measures that reflect a group’s social dynamics. 
This research focuses on the development of a model for 
predicting software project success that leverages the wealth of 
available open source project data in order to accurately forecast 
the behavior of those software engineering groups. The model 
accounts for both the technical elements of software engineering 
and the social elements that drive the decisions of individual 
developers.  Agent-based simulations are used to represent the 
complexity of the group interactions, and the behavior of each 
agent is based on the acquired open source software engineering 
data.  For four of the five project success measures, the results 
indicate that the developed model represents the underlying data 
well and provides accurate predictions of open source project 
success indicators.   

Categories and Subject Descriptors 
I.2.11 [Multiagent systems].  I.6.5 [Model Development]. I.6.4 
[Model Validation and Analysis].  D.2.4 [Software/Program 
Verification]: Statistical Methods. D.2.4 [Metrics]: Performance 
Metrics, Process Metrics.  

General Terms 
Algorithms, Measurement, Design. 

Keywords 
Software Engineering, Agent-based Simulation, FLOSS, Data-
based models, Bayesian Belief Networks. 

1. INTRODUCTION 
The complexity of a software engineering project is inherent 
given both the technical intricacies of code design and

development, and the social aspects of working as a team.  These 
difficulties are exacerbated in teams that develop Free/Libré/Open 
Source Software (FLOSS) by the distributed nature of the team, 
the lack of an organizational hierarchy, and the fact that source 
code contributors are often volunteers.  Despite these challenges, 
there are a significant number of FLOSS projects that are highly 
successful in terms of their ability to deploy mainstream products. 
The Linux operating system [15], the OpenOffice application 
[16], the Mozilla suite of Internet tools [10], and the Apache web 
server [17] are all current examples of modern FLOSS success 
stories. These projects have overcome the social and technical 
challenges associated with FLOSS development and have 
consistently produced free software products that are competitive 
with their commercial counterparts. 

This research seeks to understand the success of these projects in 
spite of such challenges.  We propose a model intended to 
represent a FLOSS project by simulating both the behavior of 
each individual developer in the project, and a manifestation of 
those cumulative individual behaviors as group actions and 
decisions.  The goal of this model is to analyze and predict 
success in FLOSS projects.  FLOSS communities are 
environments that offer unique insight into the mechanics of the 
communication between individuals, the actions of software 
contributors, and the popularity and performance of projects.  In 
the collaborative infrastructure of FLOSS websites, individual 
actions and communications are tracked and measured in detail, 
and can serve as direct inputs into the model of FLOSS software 
development.  This research leverages that availability of data in 
order to create a data-based model of the complexity of FLOSS 
software development projects.   

We propose a model that uses agent technology to simulate both a 
FLOSS project and each developer within that project in order to 
characterize it in terms of its complex social and technical 
interactions.  The developed model is focused on the simulation 
of relatively large FLOSS development teams that have achieved 
a minimum threshold of team members.  This problem space 
contains a project membership significant enough to include the 
social networking factors in the model.  The FLOSS data that is 
freely available is used to both train the system’s agents and also 
to validate the model in terms of its representation of the training 
data set and its predictive validity.  

This research describes the model used to simulate FLOSS 
projects, and the results of validating that model, in an attempt to 
better understand the factors that influence success in software 
engineering projects.  Section 2 reviews the relevant literature 
associated with the analysis of FLOSS projects and prior work in  
modeling these projects.  Section 3 describes our methodology for 

 

 



acquiring data, creating a model, and the architecture for 
implementing the model. Section 4 outlines the approach to 
validating the developed model including a description of the 
statistical tests employed.  The results of the validation and an 
associated discussion are captured in Section 5 and conclusions 
are drawn in Section 6. 

2. RELATED WORK 
FLOSS development is a phenomenon in which software products 
are created largely through voluntary contributions from a 
distributed team of software developers.  The software source 
code is freely available under various progressive licenses that 
permit users the flexibility to augment and modify the software as 
needed. The analysis of software engineering data associated with 
FLOSS projects has been the subject of many studies.  This 
section explores the prior work related to the modeling, analysis 
and measurement of FLOSS software development projects. 

This work is focused on developing a model of success in 
engineering FLOSS projects.  However, there are several 
definitions of success in software engineering, each of which is 
centered on different priorities, such as the quality of the 
software, the efficiency of the process, or the effectiveness of the 
team.  For FLOSS projects, we are interested in defining project 
success in terms of the dynamics of the distributed group.  
Leveraging the prior work described below, we focus on the 
ability of the distributed group to maintain or grow in 
membership, to effectively organize and coordinate source code 
contributions across multiple developers, and to produce software 
products that are useful in the user community.  Success in a 
FLOSS project is demonstrated though those capabilities, and 
quantified through the indicator measures proposed Section 3.2. 

Crowston, Howison, and Annabi have performed research on 
identifying metric indicators of success in FLOSS projects.  In 
2003 [7], they performed an analysis of FLOSS developer 
responses to a questionnaire in an attempt to determine the 
success factors that developers look for in projects.  An 
anticipated result was that the majority of FLOSS developers 
gauged the success of a project based on their personal 
satisfaction in contributing to the project.  The study also revealed 
that personal recognition and level of involvement of the users 
were driving criteria for developers in assessing a FLOSS 
project’s success.   

Crowston, et al., followed up their 2003 study with an empirical 
analysis of 122 FLOSS projects to identify four measures, 
extracted from the available FLOSS data, which were evaluated 
as indicators of project success [6].  The four measures included 
the size of the development team, the time to fix bugs, the number 
of downloads and the SourceForge activity level.  In their 
analysis, the authors stress that a breadth of measures is necessary 
to completely characterize the success of a FLOSS project.  They 
also identify three of the four measures as potentially good project 
success measures.  The SourceForge activity level was deemed to 
be unsuitable as it is derived from the others and so is essentially 
redundant. 

The social and behavioral aspects of FLOSS development have 
also been studied.  Hahn, Moon, and Zhang [9] empirically 
examined the formation of FLOSS project teams and validated the 
significance of previous social ties on the probability of a project 
to attract developers.  Ngamkajornwiwat, et al. [8], explored the 

evolution of FLOSS communities in terms of social networking 
measures.  A social network is a graph comprised of nodes, 
representing individuals, and ties (or arcs) between the nodes that 
represent a relationship between individuals.  Their results 
indicate that there are distinct convergent patterns in the social 
networks of FLOSS communities as projects evolve.  Crowston, 
et al. [18] explored the relationship between software engineering 
metrics and the social network of projects in order to discern the 
core development team associated with a project. 

While the above studies focus on the analysis of FLOSS data, 
very little work has been done to model the behavior in FLOSS 
projects.  Crowston, et al. [19] proposed a model for effective 
work practices in FLOSS development.  The model was based 
largely on an existing model of group effectiveness initially 
proposed by Hackman [20] in 1986.  The model was a taxonomy 
of attributes and sub-attributes intended to serve as a normative 
reference for future analyses.  While the paper provided no 
validation for the organization, it did outline several propositions, 
which form the hypothetical underpinnings for model validation 
in future studies.  There does not appear to be work in the area of 
modeling the behavior of FLOSS groups in order to characterize 
or forecast a project’s success. 

We seek to address this gap in the research by developing a model 
of FLOSS projects in order to better understand the performance 
of those groups.  In addition to modeling project-level decisions 
and actions, we propose an architecture where the behavior of 
each developer is modeled as a unique contributor capable of 
deciding the extent of the contribution. To our knowledge, no 
prior work has attempted to model FLOSS projects in order to get 
an improved understanding of emergent behavior within these 
complex systems. 

3. TECHNICAL APPROACH 
This section discusses the technical approach to the modeling of 
FLOSS projects.  We begin by describing the criteria for FLOSS 
project selection and acquisition of data.  Next, the design of the 
agent-based simulation is presented, including the model for the 
project environment.  Finally, the social network elements of the 
model are presented including the approach for representing the 
decisions of humans. 

 

3.1 Data Collection 
This research has leveraged open source software development 
data freely available through the SourceForge Research Data 
Archive, hosted by the Department of Computer Science and 
Engineering at the University of Notre Dame [4].  This data 
repository has housed metrics for open source projects from the 
SourceForge website since April 2003.  SourceForge [5] is an 
online center for FLOSS development communities, and provides 
collaborative resources for approximately 200,000 projects. 

We developed scripts that query the SourceForge Research Data 
Archive for project data that meet our criteria.  Because this 
project seeks to understand both the social and technical impacts 
on projects, establishing a minimum threshold for team size was 
necessary.  We were interested in projects that reached a 
minimum team size of 20 developers at some point in the project 
lifetime in order to ensure that both the social and technical 
factors were well represented.  In addition, we eliminated those 



projects that did not appear to use the SourceForge collaboration 
tools as a significant means for communication and coordination, 
based on the message board and artifact statistics reported 
monthly for each project.  In all, we identified 67 projects as 
viable for use as training data for our model. 

3.2 FLOSS Success Measures 
Forecasting the success of a software engineering project depends 
largely on the effectiveness of the selected measures as indicators 
of software development success. The FLOSS success measures 
used in this research are listed in Table 1.  Each success measure 
is listed in terms of an abstract label, a specific metric used in the 
FLOSS domain, and a description of the interpretation of the 
measure. 

Leveraging the analysis of FLOSS success measures performed in 
[6], we used Number of Developers and Number of Downloads as 
indicators of project success.  We selected two additional 
SourceForge project metrics, Development Status and Group 
Ranking as indicators of success.  Development Status provides 
visibility into the effectiveness, or maturity of the FLOSS 
Organization.  Group Ranking is a measure of the popularity of a 
given project relative to other SourceForge projects.  We also 
selected the Number of Releases as a measure of project success 
based primarily on the logic that an increasing release count is 
indicative of a flourishing organization.  We believe these five 
measures are indicators of effectiveness and organization in a 
group.  The goal of the simulation is to accurately represent the 
underlying FLOSS data in terms of the Table 1 measures, and 
also to reliably predict future trends in these measures for each 
studied group. 

Table 1. FLOSS Success Measures 

Success 
Measure 

FLOSS Domain 
Metric 

Description 

Group 
Maturity 

Development 
Status 

 

Measures the efficiency 
and effectiveness of the 
group. 

Group 
Membership 

Number of 
Developers 

 

A count of the group’s 
core membership.  

Number of 
Events 

Number of 
Software Releases 

A count of the number 
of orchestrated actions 
that the group has 
performed. 

Group 
Utility 

Number of 
Downloads 

Measures the degree to 
which the group’s 
actions are found to be 
useful in the community. 

Group 
Popularity 

SourceForge 
Group Ranking 

The popularity of the 
group in the community. 

 

3.3 Simulation Design and Implementation 
Our approach to reproducing the complex environment of FLOSS 
software development was to use an agent-based simulation 
framework and model each project developer as a unique agent, 
called a Developer Agent, capable of making independent 

decisions.  In addition, a software agent called the Project Agent 
was used to model the collective actions and decisions of the 
group.  Figure 1 depicts the agent architecture used in this 
simulation.  Software agents, depicted as circles in the 
architecture diagram, represent the behavior of both individual 
developers and also the FLOSS project as a whole.  Connecting 
the agents are interfaces, shown as rectangles, which serve as the 
mechanisms for communicating project state to each Developer 
Agent, and for communicating individual developer contributions 
to the Project Agent.  A developer contribution to a project is 
either a message posted, a software bug that has been fixed, or a 
section of original source code to increase project capabilities. 

To run the simulation, the Project Agent and each of the initial 
Developer Agents initialize to either random values or known 
values, depending on the presence of any project-specific initial 
conditions.  Information flows cyclically from the project to the 
individual agents and is fed back to the project again (as depicted 
with arrows in Figure 1) until stopping criteria are met.  In this 
simulation, the stopping criterion was simply the number of time 
slices for which the operator wished to forecast the project’s 
success.  The Project Agent uses the developer contributions to 
make decisions about project-level events, such as the occurrence 
of a software release, or the addition/subtraction of project 
developers.  The Developer Agents use the project-level events to 
make decisions about their individual level of contribution in 
terms of both source code and communication via project 
message boards.  The simulation is implemented using the Multi-
agent Simulator of Networks (MASON) [14], a set of libraries 
provided jointly by George Mason University’s Evolutionary 
Computation Laboratory and Center for Social Complexity. 
 

 
Figure 1 FLOSS Agent-based Simulation Architecture 

 
The Project Agent was designed to be a data-based model that 
would exhibit behavior consistent with the collected project 
metrics.  We selected Bayesian Belief Networks as the 
mechanism for modeling causal relationships between acquired 
metrics.  A Bayesian Belief Network (BBN) is graphically 
represented as a collection of nodes that are connected by directed 
arcs.  The nodes that comprise a BBN represent random variables 
within the model, with each node providing probabilities of 
outcomes based on a set of input values.  The directed arcs in a 
BBN represent causal relationships or dependencies between 
nodes. The mathematical function that governs each BBN node is 
Bayes’ Rule of conditional probability, originally proposed in 
[21].  A BBN represents chains of cause-effect relationships in 



which outcomes at each node are calculated as conditional 
probabilities based on the current state(s) of the node’s inputs. 

  
In order to identify a graphical structure for a BBN, causal 
relationships between the relevant random variables, the FLOSS 
metrics, had to be established.  The first step in that process was 
to identify the set of random variables that could be modeled, and 
then determine those that were relevant.  The design approach to 
the simulation and the metrics that were available from the 
SourceForge data framed the type of measurements that would be 
used as the inputs and outputs of the Bayesian model. The agents 
that represented individuals were constrained to produce 
measurement values that were representative of an individual’s 
contribution to a project.  There were several measures that were 
available, including the number of source code contributions, the 
number of messages posted, and the number of bug fixes 
implemented.  Similarly, the project agents were constrained to 
produce measurements that were appropriate to group behavior 
and decisions. These were primarily the candidates for the success 
measures, and included such possibilities as the number of 
releases, the group size, and the group’s development status. Once 
these inputs and outputs were determined, other metrics that 
might be relevant in the simulation were considered.  Measures 
such as the time since the last release, a change in the licensing 
scheme, and average bug-fix time were considered. In all, we 
identified 19 potential measures for use in the Bayesian model.   
 
Once the potential variables to be used in the Bayesian model of 
group behavior were identified, the goal was to determine those 
factors that were relevant, and develop a structure that represented 
the causal relationships between factors. Kan [22] listed three 
criteria for using empirical data to establish causal relationships: 
(1) cause precedes effect in time or logic, (2) two variables must 
be empirically correlated, and (3) any observed correlation is 
logical.  In the case of a Project Agent, decisions from individuals 
(represented as outputs Developer Agents), such as level of 
participation in the project, influence the project-level behaviors.  
Thus, aggregated developer metrics must precede project decision 
and project effect metrics in the BBN.  Similarly, variables that 
are explicitly group decisions, as described in Section 3.2, must 
be outputs of the group decision model.  Thus, with Project Agent 
inputs and outputs defined, the dependencies between input and 
output nodes must be determined in addition to including any 
relevant intermediary variables.  
 
In order to determine dependencies between Project Agent model 
variables, we initially analyzed the correlations between metrics.  
Although this revealed very few significant relationships, it did 
serve to eliminate some potential relationships between variables, 
thus reducing the state space.  In the absence of significant 
correlations, we relied on the Mutual Information (MI) between 
variables, a technique for feature selection in machine learning 
[23], as an indicator of significance. MI is a measure of relative 
entropy between two random variables that quantifies the extent 
to which uncertainty in one random variable is reduced by 
knowledge of the state of the other random variable. The MI 
analysis further identified significant relationships between 
variables.  The structure of the network was then developed by 
exploring different combinations of potential variable 
relationships in order to optimize the model’s performance. 
 

The Project Agent’s Bayesian network is shown in Figure 2.  We 
have partitioned the model structure into three tiers in order to 
more easily associate collections of random variables with their 
role in the simulation structure.  Software engineering and project 
metrics from the Developer Agents are accumulated and entered 
as known values into the nodes at the Acquisition Tier of the 
network.  Discretization of continuous input values was 
accomplished using Equal Width Discretization (EWD) [24], with 
each interval size based on standard deviation of the metric’s 
underlying distribution.  The six metrics identified in the 
Acquisition Tier were found to be the most significant factors in 
the MI analysis.  The Project Decision Tier infers changes in the 
state of the project based on the inputs.  These changes include 
whether or not the project is ready to make a software release, or 
whether the maturity of the project has improved. The Project 
Agent makes decisions on the state of each of these variables by 
applying a random number generator to the distribution of belief 
values associated with the appropriate node. The belief values are 
calculated by determining the joint probability distribution using 
the a priori SourceForge data and the current state of the nodes 
from the Acquisition Tier. The Project Effects Tier uses the 
inferred states of the Project Decision Tier to deduce the effects of 
those states on variables such as the number of downloads of the 
software product, or the group ranking (popularity) of the project.  
The states and associated beliefs of the Project Effects Tier are the 
data that drive the decisions made in the Developer Agents. 

 

 
Figure 2 Project Agent Bayesian Belief Network Structure 

 
At the core of each Developer Agent is a rule-based model that 
adjusts its behavior based on the current state of the project.  The 
developed rules are based on heuristics, and are meant to 
reproduce each individual developer’s degree of satisfaction with 
the project and motivation to continue to work on it.  A Developer 
Agent’s likelihood to contribute to the project in terms of forum 
messages, source code contributions, or bug fixes is dependent on 
that developer’s perception of the project’s progress, prestige, and 
utility.  The Project Agent calculates and communicates values 
for project utility, popularity, and maturity to each Developer 
Agent, in addition to information regarding changes in project 
membership or whether a release has occurred.  The rule set in 
each Developer Agent adjusts the probability that the developer 
will make a contribution to the project based on the current values 
of project-level information.  The Developer Agent then 
determines a level of participation in the project by applying a 



random number generator to these adjusted probabilities, and 
communicating the type and level of contribution back to the 
Project Agent. 

3.4 Social Modeling 
The social element of the FLOSS project simulation was 
accomplished by modeling the Developer Agents and their 
interactions in a social network.  Each Developer Agent is 
represented as a node in the social network, and social 
connections are represented as edges between nodes.  For the 
purposes of this open source software research, a social 
connection between developers is defined as the co-occurrence of 
message posts in the same forum in a given project.  The message 
posts, as acquired for each project through SourceForge, were a 
factor in determining the level of contribution of a developer to 
the simulated project. 

4. MODEL VALIDATION APPROACH 
Validating the proposed FLOSS model involves collecting and 
using a set of software engineering data, and using that data to 
confirm the ability of the model to characterize the data set, and 
the ability of the model to make predictions for unknown data.  
This section describes the approach to these activities including 
an outline of the validation process, and a description of the 
statistical tests and formulas used to quantify accuracy of fit and 
predictive validity. 

4.1 Validation Process 
The general approach to validation of the agent-based simulation 
of FLOSS projects is to train the model with the software 
engineering data and then measure the ability of the model to both 
accurately represent the distribution of selected measures for a 
given project, and accurately predict the distribution of those 
measures. 

 

 
Figure 3 Model Validation Process 

 

The validation process for the agent-based simulation involves 
three phases, and is depicted in Figure 3.  Instrumentation is the 
phase where the model steps through a predetermined number of 
time-slices, but loads each of the random variables in the model 
from the actual data.  In effect, Instrumentation is the 
initialization of the model to a specific project.  In the Simulation 
phase, the model is run, and both modeled and actual data values 
for each of the random variables at each of the time slices are 
recorded.  The Validation phase is the statistical comparison of 

the modeled and actual data.  The specific tests that are used to 
validate the model are described in Sections 4.2 and 4.3. 

In this validation exercise, the model was instrumented with 
actual project data for 9 time slices (i.e., 9 months of data), and 
then simulated for 1, 3, 6, 9, and 12 additional time slices.  A 
“time slice” refers to a calendar month, which is the rate at which 
the counts for message post, source code contributions, etc. are 
calculated and recorded at the SourceForge Research Data 
Archive.  At each interval, an assessment of the Accuracy of Fit 
and Predictive Validity were recorded.  Each of the charts that 
present validation results use the projected (simulated) time slice 
values to show the trends for the Accuracy of Fit and Predictive 
Validity of each variable as the simulation progressed. 

4.2 Determining Accuracy of Fit 
The Accuracy of Fit measure is a quantitative determination of 
how well a model represents the underlying data. It is a measure 
that indicates the correctness of the model with respect to the data 
that was used to construct the model.  Accuracy of Fit is 
determined through an analysis of the Equality of Means and the 
Equality of Variances between the modeled values of the open 
source software measures and the associated actual values. 

 
The Equality of Means Hypothesis Test [3] (see Figure 4) 
quantifies the confidence that the mean value of two given 
populations are equivalent. By comparing the Equality of Means 
between actual open source software values and modeled open 
source software values, the ability of the model to accurately 
characterize the underlying data set is revealed. If the Test 
Statistic (t) for the given quality measure is less than the critical 
value (tn-ν,α/2) for that measure, then the null hypothesis must be 
accepted, the means are determined to be equivalent, and the 
model is said to provide an accurate fit for the underlying data.  
For this study, a confidence of α = 0.9, or 90% was used for all 
Equality of Means calculations. Thus, there is 90% confidence 
that all Equality of Means determinations are correct. 

 

 
Figure 4 Hypothesis Test for Equality of Means 

 
The approach to calculating the Equality of Variances is to use a 
textbook rule of thumb test recommended in [1], where in 
comparing the modeled data to the actual data, if the ratio of the 
maximum variance value to the minimum variance value must be 
less than three to consider the variances equivalent. The 
application of this rule of thumb is appropriate in that it bounds 
the relationship of the variances. The goal for the Equality of 
Variances is not to get a quantifiable confidence on the accuracy 
of the modeled data (which is already accomplished through the 
Equality of Means test), but to get a discrete indication that the 



variance of the modeled data is on the order of the variance of the 
actual data. 

 

4.3 Determining Predictive Validity 
The Predictive Validity is a measure of how accurately the model 
predicts a variable using an unknown data set as input. It is a 
quantitative way of determining how well a given model 
characterizes an unknown.  Predictive Validity is measured using 
the Average Absolute Error (AAE) and Average Relative Error 
(ARE). AAE and ARE describe the deviations of the actual data 
from the modeled data, and are shown in Figure 5 and Figure 6 as 
defined in [2]. 
 

 
Figure 5 Calculation of Average Relative Error 

 

 

Figure 6 Calculation of Average Absolute Error 

 
By definition, the lower the values of AAE and ARE, the more 
closely the model approximates the actual data. The AAE and 
ARE in determining Predictive Validity provide assurance that 
the model developed is reliable in making predictions about 
unknown data.  In this study, ARE was used to validate lower 
variance variables and AAE is used to validate higher variance 
variables, where values can confound ARE results.  These 
measures have been used for the Predictive Validity of software 
engineering models in prior work [12][13], and in the case of 
ARE, a value of 0.25 or less (within 25% of actual value on 
average) is considered acceptable [11] to provide a useful 
prediction. 

5. MODEL VALIDATION RESULTS 
This section captures the results of applying the tests for 
Accuracy of Fit and Predictive Validity to an agent-based 
simulation that models group behaviors in the domain of FLOSS 
development. 
 

5.1 Accuracy of Fit Results 
The results of applying the Accuracy of Fit statistical tests, 
Equality of Means, and Equality of Variances are shown in Figure 
7 and Figure 8.  The Equality of Means analysis, shown in Figure 
7, highlights the statistical threshold for this test as a black line.  
The interpretation of this graph is that those data points below the 

threshold line indicate that the simulation was able to maintain a 
mean value consistent with the underlying data for those metrics.  
Similarly, data points above the threshold indicate that the 
simulation diverged from the distribution upon which the 
simulation is based.  Figure 7 shows that the mean values of four 
of the five FLOSS success measures were consistent with their 
actual mean values for up to three time slices.  In the case of 
Group Membership, the mean value was consistent for nine 
simulated time slices.  Thus the model performed well in 
remaining consistent with the underlying mean values of the data 
for short-term simulation, but became less consistent as the 
simulation progressed.  The Group Popularity was an exception in 
this test, and is discussed further below.  Only two measurement 
points are shown for Group Popularity to maintain a viewable 
scale for the figure, but the Test Statistic value continued to 
increase for 6, 9, and 12 time slices. 
 

 
Figure 7 Equality of Means Validation 

 

The results of the Equality of Variances test, shown in Figure 8, 
are similar to the Equality of Means in their interpretation.  
Values above the threshold line indicate points of unequal 
variance between actual and simulated data, and values below the 
threshold indicate points of consistency across the variances.  The 
model did very well at simulating the variances for modeled 
values consistent with the underlying FLOSS data.  The most 
striking exception, as with the Equality of Means test, is the 
Group Popularity measure. 

 



 
Figure 8 Equality of Variances Validation 

 
For both of the Accuracy of Fit statistical tests, the model’s lack 
of ability to represent the Group Popularity (SourceForge Group 
Ranking) measure is unexpected.  The developed agent-based 
simulation performs well in modeling this measure for one time 
slice, and then its distribution quickly diverges for subsequent 
time slices.  We postulate that Group Popularity is modeled 
poorly because the assumptions regarding a group’s influence on 
its popularity were flawed.  In the agent-based simulation of 
FLOSS environments, each measure is calculated with the 
assumption that the actions and interactions of individuals in the 
group are causal factors in the emergence of group behavior.  In 
the case of Group Popularity, this assumption does not hold 
because popularity is relative to the other groups in the 
environment.  For example, Group Ranking, which is the 
SourceForge FLOSS measure for popularity, is relative to the 
popularity of the other projects on the web site.  That is, it is not 
only the efficiency and organization of one group that affects its 
popularity, but that of all groups relative to each other.  Because 
the current model is focused on the simulation of a single FLOSS 
group, it does not account for the presence and efforts of other 
groups.  Thus, it is unlikely that it will be able to represent Group 
Popularity accurately.  This is confirmed through the results of 
the Accuracy of Fit for that measure. 
 

5.2 Predictive Validity Results 
The results of applying the Predictive Validity tests, ARE and 
AAE, are shown in Figure 9 and Figure 10.  The lower variance 
FLOSS success measures are shown in the ARE results in Figure 
9.  Recalling that an acceptable threshold for ARE is 0.25 or less, 
any values below the threshold line indicate that the model is a 
good predictor for that variable.  The chart shows that for early 
predictions, two of the three variables are acceptable predictors.  
For both of those variables, the Number of Events and the Group 
Maturity, the model was a good predictor for up to three projected 
time slices.  Group Membership was not as easily predicted in the 
earlier time slices, but converged towards the accuracies of the 
other variables at approximately the 6th time slice of simulation. 

 

 
Figure 9 Average Relative Error (ARE) Validation 

 
Figure 10 shows the AAE values for the high variance measures 
used to characterize FLOSS project success.  These values are not 
normalized and so cannot be compared to a threshold.  However, 
they can be analyzed in the context of their ranges.  Group 
Popularity, for example, is instantiated in the model as the 
SourceForge Group Ranking measure, which has a range 
equivalent to the number of SourceForge projects (~200,000).  So, 
an average error of approximately 5,000 for Group Popularity in 
the first time slice is surprisingly accurate given the range of the 
metric. Similarly, the Group Utility measure, represented in the 
model as the Number of SourceForge downloads, is relative to a 
range of tens of thousands.  Similar to the success variables 
analyzed through ARE, the AAE values for Group Utility and 
Group Popularity indicate the model is a reasonable predictor of 
near-term future values, but its performance degrades 
significantly as the simulation progresses.  More analysis is 
needed to refine the model such that its predictive performance 
can be improved. 
 

 
Figure 10 Average Absolute Error (AAE) Validation 

 
The results presented in this section are the first steps in 
simulating the behavior of social groups using FLOSS data as a 
basis for modeling, and are promising as an initial attempt.  We 
expect the Accuracy of Fit and the Predictive Validity to improve 
further as the model structure is refined and the scope of variables 



modeled is increased.  The intent is to mature this model to be 
more robust and to represent a full spectrum of group and 
individual attributes that can be represented through real data sets 
when available. 
 

6. CONCLUSION 
We have developed a data-based model for group behavior that 
leverages FLOSS data and agent technology to produce a 
simulation that accurately represents the source data set.  Using 
this model, we have been able to predict for group-level behaviors 
such as group membership changes, group efficiency and 
popularity, and the occurrence of group-level events or actions. 
We intend to extend this work to analyze the following: 

 Model the self-organization of groups in order to 
identify those factors that contribute to a group 
attracting members,  

 Explore in more depth the relative impact of each 
category of individual contributions on the project’s 
success metrics, 

 Model an environment with multiple groups that have 
low-coupling interactions, and 

 Extend the model of individual developers to create a 
data-based model of individual behavior. 

We believe the FLOSS environment provides a unique 
opportunity to quantitatively measure group behavior.  Individual 
contributions are concretely tracked and measured in terms of 
both work products and social interactions.  We intend to leverage 
this environment to explore a data-based model for group 
behavior that is applicable in the context of software engineering, 
but also to a variety of other domains. 
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