
Modeling Success in FLOSS Project Groups
Justin M. Beaver

Oak Ridge
National Laboratory

P.O. Box 2008, MS-6085
Oak Ridge, TN 37831

865-576-0327

beaverjm@ornl.gov

Xiaohui Cui
Oak Ridge

National Laboratory
P.O. Box 2008, MS-6085

Oak Ridge, TN 37831
865-576-9654

cuix@ornl.gov

Jesse L. St Charles
Carnegie Mellon

University
Wean Hall 1327
Pittsburgh, PA
412-268-5866

jstcharl@andrew.cmu.edu

Thomas E. Potok
Oak Ridge

National Laboratory
P.O. Box 2008, MS-6085

Oak Ridge, TN 37831
865-574-0834

potokte@ornl.gov

ABSTRACT
A significant challenge in software engineering is accurately
modeling projects in order to correctly forecast success or failure.
The primary difficulty is that software development efforts are
complex in terms of both the technical and social aspects of the
engineering environment. This is compounded by the lack of real
data that captures both the measures of success in performing a
process, and the measures that reflect a group’s social dynamics.
This research focuses on the development of a model for
predicting software project success that leverages the wealth of
available open source project data in order to accurately forecast
the behavior of those software engineering groups. The model
accounts for both the technical elements of software engineering
and the social elements that drive the decisions of individual
developers. Agent-based simulations are used to represent the
complexity of the group interactions, and the behavior of each
agent is based on the acquired open source software engineering
data. For four of the five project success measures, the results
indicate that the developed model represents the underlying data
well and provides accurate predictions of open source project
success indicators.

Categories and Subject Descriptors
I.2.11 [Multiagent systems]. I.6.5 [Model Development]. I.6.4
[Model Validation and Analysis]. D.2.4 [Software/Program
Verification]: Statistical Methods. D.2.4 [Metrics]: Performance
Metrics, Process Metrics.

General Terms
Algorithms, Measurement, Design.

Keywords
Software Engineering, Agent-based Simulation, FLOSS, Data-
based models, Bayesian Belief Networks.

1. INTRODUCTION
The complexity of a software engineering project is inherent
given both the technical intricacies of code design and

development, and the social aspects of working as a team. These
difficulties are exacerbated in teams that develop Free/Libré/Open
Source Software (FLOSS) by the distributed nature of the team,
the lack of an organizational hierarchy, and the fact that source
code contributors are often volunteers. Despite these challenges,
there are a significant number of FLOSS projects that are highly
successful in terms of their ability to deploy mainstream products.
The Linux operating system [15], the OpenOffice application
[16], the Mozilla suite of Internet tools [10], and the Apache web
server [17] are all current examples of modern FLOSS success
stories. These projects have overcome the social and technical
challenges associated with FLOSS development and have
consistently produced free software products that are competitive
with their commercial counterparts.

This research seeks to understand the success of these projects in
spite of such challenges. We propose a model intended to
represent a FLOSS project by simulating both the behavior of
each individual developer in the project, and a manifestation of
those cumulative individual behaviors as group actions and
decisions. The goal of this model is to analyze and predict
success in FLOSS projects. FLOSS communities are
environments that offer unique insight into the mechanics of the
communication between individuals, the actions of software
contributors, and the popularity and performance of projects. In
the collaborative infrastructure of FLOSS websites, individual
actions and communications are tracked and measured in detail,
and can serve as direct inputs into the model of FLOSS software
development. This research leverages that availability of data in
order to create a data-based model of the complexity of FLOSS
software development projects.

We propose a model that uses agent technology to simulate both a
FLOSS project and each developer within that project in order to
characterize it in terms of its complex social and technical
interactions. The developed model is focused on the simulation
of relatively large FLOSS development teams that have achieved
a minimum threshold of team members. This problem space
contains a project membership significant enough to include the
social networking factors in the model. The FLOSS data that is
freely available is used to both train the system’s agents and also
to validate the model in terms of its representation of the training
data set and its predictive validity.

This research describes the model used to simulate FLOSS
projects, and the results of validating that model, in an attempt to
better understand the factors that influence success in software
engineering projects. Section 2 reviews the relevant literature
associated with the analysis of FLOSS projects and prior work in
modeling these projects. Section 3 describes our methodology for

acquiring data, creating a model, and the architecture for
implementing the model. Section 4 outlines the approach to
validating the developed model including a description of the
statistical tests employed. The results of the validation and an
associated discussion are captured in Section 5 and conclusions
are drawn in Section 6.

2. RELATED WORK
FLOSS development is a phenomenon in which software products
are created largely through voluntary contributions from a
distributed team of software developers. The software source
code is freely available under various progressive licenses that
permit users the flexibility to augment and modify the software as
needed. The analysis of software engineering data associated with
FLOSS projects has been the subject of many studies. This
section explores the prior work related to the modeling, analysis
and measurement of FLOSS software development projects.

This work is focused on developing a model of success in
engineering FLOSS projects. However, there are several
definitions of success in software engineering, each of which is
centered on different priorities, such as the quality of the
software, the efficiency of the process, or the effectiveness of the
team. For FLOSS projects, we are interested in defining project
success in terms of the dynamics of the distributed group.
Leveraging the prior work described below, we focus on the
ability of the distributed group to maintain or grow in
membership, to effectively organize and coordinate source code
contributions across multiple developers, and to produce software
products that are useful in the user community. Success in a
FLOSS project is demonstrated though those capabilities, and
quantified through the indicator measures proposed Section 3.2.

Crowston, Howison, and Annabi have performed research on
identifying metric indicators of success in FLOSS projects. In
2003 [7], they performed an analysis of FLOSS developer
responses to a questionnaire in an attempt to determine the
success factors that developers look for in projects. An
anticipated result was that the majority of FLOSS developers
gauged the success of a project based on their personal
satisfaction in contributing to the project. The study also revealed
that personal recognition and level of involvement of the users
were driving criteria for developers in assessing a FLOSS
project’s success.

Crowston, et al., followed up their 2003 study with an empirical
analysis of 122 FLOSS projects to identify four measures,
extracted from the available FLOSS data, which were evaluated
as indicators of project success [6]. The four measures included
the size of the development team, the time to fix bugs, the number
of downloads and the SourceForge activity level. In their
analysis, the authors stress that a breadth of measures is necessary
to completely characterize the success of a FLOSS project. They
also identify three of the four measures as potentially good project
success measures. The SourceForge activity level was deemed to
be unsuitable as it is derived from the others and so is essentially
redundant.

The social and behavioral aspects of FLOSS development have
also been studied. Hahn, Moon, and Zhang [9] empirically
examined the formation of FLOSS project teams and validated the
significance of previous social ties on the probability of a project
to attract developers. Ngamkajornwiwat, et al. [8], explored the

evolution of FLOSS communities in terms of social networking
measures. A social network is a graph comprised of nodes,
representing individuals, and ties (or arcs) between the nodes that
represent a relationship between individuals. Their results
indicate that there are distinct convergent patterns in the social
networks of FLOSS communities as projects evolve. Crowston,
et al. [18] explored the relationship between software engineering
metrics and the social network of projects in order to discern the
core development team associated with a project.

While the above studies focus on the analysis of FLOSS data,
very little work has been done to model the behavior in FLOSS
projects. Crowston, et al. [19] proposed a model for effective
work practices in FLOSS development. The model was based
largely on an existing model of group effectiveness initially
proposed by Hackman [20] in 1986. The model was a taxonomy
of attributes and sub-attributes intended to serve as a normative
reference for future analyses. While the paper provided no
validation for the organization, it did outline several propositions,
which form the hypothetical underpinnings for model validation
in future studies. There does not appear to be work in the area of
modeling the behavior of FLOSS groups in order to characterize
or forecast a project’s success.

We seek to address this gap in the research by developing a model
of FLOSS projects in order to better understand the performance
of those groups. In addition to modeling project-level decisions
and actions, we propose an architecture where the behavior of
each developer is modeled as a unique contributor capable of
deciding the extent of the contribution. To our knowledge, no
prior work has attempted to model FLOSS projects in order to get
an improved understanding of emergent behavior within these
complex systems.

3. TECHNICAL APPROACH
This section discusses the technical approach to the modeling of
FLOSS projects. We begin by describing the criteria for FLOSS
project selection and acquisition of data. Next, the design of the
agent-based simulation is presented, including the model for the
project environment. Finally, the social network elements of the
model are presented including the approach for representing the
decisions of humans.

3.1 Data Collection
This research has leveraged open source software development
data freely available through the SourceForge Research Data
Archive, hosted by the Department of Computer Science and
Engineering at the University of Notre Dame [4]. This data
repository has housed metrics for open source projects from the
SourceForge website since April 2003. SourceForge [5] is an
online center for FLOSS development communities, and provides
collaborative resources for approximately 200,000 projects.

We developed scripts that query the SourceForge Research Data
Archive for project data that meet our criteria. Because this
project seeks to understand both the social and technical impacts
on projects, establishing a minimum threshold for team size was
necessary. We were interested in projects that reached a
minimum team size of 20 developers at some point in the project
lifetime in order to ensure that both the social and technical
factors were well represented. In addition, we eliminated those

projects that did not appear to use the SourceForge collaboration
tools as a significant means for communication and coordination,
based on the message board and artifact statistics reported
monthly for each project. In all, we identified 67 projects as
viable for use as training data for our model.

3.2 FLOSS Success Measures
Forecasting the success of a software engineering project depends
largely on the effectiveness of the selected measures as indicators
of software development success. The FLOSS success measures
used in this research are listed in Table 1. Each success measure
is listed in terms of an abstract label, a specific metric used in the
FLOSS domain, and a description of the interpretation of the
measure.

Leveraging the analysis of FLOSS success measures performed in
[6], we used Number of Developers and Number of Downloads as
indicators of project success. We selected two additional
SourceForge project metrics, Development Status and Group
Ranking as indicators of success. Development Status provides
visibility into the effectiveness, or maturity of the FLOSS
Organization. Group Ranking is a measure of the popularity of a
given project relative to other SourceForge projects. We also
selected the Number of Releases as a measure of project success
based primarily on the logic that an increasing release count is
indicative of a flourishing organization. We believe these five
measures are indicators of effectiveness and organization in a
group. The goal of the simulation is to accurately represent the
underlying FLOSS data in terms of the Table 1 measures, and
also to reliably predict future trends in these measures for each
studied group.

Table 1. FLOSS Success Measures

Success
Measure

FLOSS Domain
Metric

Description

Group
Maturity

Development
Status

Measures the efficiency
and effectiveness of the
group.

Group
Membership

Number of
Developers

A count of the group’s
core membership.

Number of
Events

Number of
Software Releases

A count of the number
of orchestrated actions
that the group has
performed.

Group
Utility

Number of
Downloads

Measures the degree to
which the group’s
actions are found to be
useful in the community.

Group
Popularity

SourceForge
Group Ranking

The popularity of the
group in the community.

3.3 Simulation Design and Implementation
Our approach to reproducing the complex environment of FLOSS
software development was to use an agent-based simulation
framework and model each project developer as a unique agent,
called a Developer Agent, capable of making independent

decisions. In addition, a software agent called the Project Agent
was used to model the collective actions and decisions of the
group. Figure 1 depicts the agent architecture used in this
simulation. Software agents, depicted as circles in the
architecture diagram, represent the behavior of both individual
developers and also the FLOSS project as a whole. Connecting
the agents are interfaces, shown as rectangles, which serve as the
mechanisms for communicating project state to each Developer
Agent, and for communicating individual developer contributions
to the Project Agent. A developer contribution to a project is
either a message posted, a software bug that has been fixed, or a
section of original source code to increase project capabilities.

To run the simulation, the Project Agent and each of the initial
Developer Agents initialize to either random values or known
values, depending on the presence of any project-specific initial
conditions. Information flows cyclically from the project to the
individual agents and is fed back to the project again (as depicted
with arrows in Figure 1) until stopping criteria are met. In this
simulation, the stopping criterion was simply the number of time
slices for which the operator wished to forecast the project’s
success. The Project Agent uses the developer contributions to
make decisions about project-level events, such as the occurrence
of a software release, or the addition/subtraction of project
developers. The Developer Agents use the project-level events to
make decisions about their individual level of contribution in
terms of both source code and communication via project
message boards. The simulation is implemented using the Multi-
agent Simulator of Networks (MASON) [14], a set of libraries
provided jointly by George Mason University’s Evolutionary
Computation Laboratory and Center for Social Complexity.

Figure 1 FLOSS Agent-based Simulation Architecture

The Project Agent was designed to be a data-based model that
would exhibit behavior consistent with the collected project
metrics. We selected Bayesian Belief Networks as the
mechanism for modeling causal relationships between acquired
metrics. A Bayesian Belief Network (BBN) is graphically
represented as a collection of nodes that are connected by directed
arcs. The nodes that comprise a BBN represent random variables
within the model, with each node providing probabilities of
outcomes based on a set of input values. The directed arcs in a
BBN represent causal relationships or dependencies between
nodes. The mathematical function that governs each BBN node is
Bayes’ Rule of conditional probability, originally proposed in
[21]. A BBN represents chains of cause-effect relationships in

which outcomes at each node are calculated as conditional
probabilities based on the current state(s) of the node’s inputs.

In order to identify a graphical structure for a BBN, causal
relationships between the relevant random variables, the FLOSS
metrics, had to be established. The first step in that process was
to identify the set of random variables that could be modeled, and
then determine those that were relevant. The design approach to
the simulation and the metrics that were available from the
SourceForge data framed the type of measurements that would be
used as the inputs and outputs of the Bayesian model. The agents
that represented individuals were constrained to produce
measurement values that were representative of an individual’s
contribution to a project. There were several measures that were
available, including the number of source code contributions, the
number of messages posted, and the number of bug fixes
implemented. Similarly, the project agents were constrained to
produce measurements that were appropriate to group behavior
and decisions. These were primarily the candidates for the success
measures, and included such possibilities as the number of
releases, the group size, and the group’s development status. Once
these inputs and outputs were determined, other metrics that
might be relevant in the simulation were considered. Measures
such as the time since the last release, a change in the licensing
scheme, and average bug-fix time were considered. In all, we
identified 19 potential measures for use in the Bayesian model.

Once the potential variables to be used in the Bayesian model of
group behavior were identified, the goal was to determine those
factors that were relevant, and develop a structure that represented
the causal relationships between factors. Kan [22] listed three
criteria for using empirical data to establish causal relationships:
(1) cause precedes effect in time or logic, (2) two variables must
be empirically correlated, and (3) any observed correlation is
logical. In the case of a Project Agent, decisions from individuals
(represented as outputs Developer Agents), such as level of
participation in the project, influence the project-level behaviors.
Thus, aggregated developer metrics must precede project decision
and project effect metrics in the BBN. Similarly, variables that
are explicitly group decisions, as described in Section 3.2, must
be outputs of the group decision model. Thus, with Project Agent
inputs and outputs defined, the dependencies between input and
output nodes must be determined in addition to including any
relevant intermediary variables.

In order to determine dependencies between Project Agent model
variables, we initially analyzed the correlations between metrics.
Although this revealed very few significant relationships, it did
serve to eliminate some potential relationships between variables,
thus reducing the state space. In the absence of significant
correlations, we relied on the Mutual Information (MI) between
variables, a technique for feature selection in machine learning
[23], as an indicator of significance. MI is a measure of relative
entropy between two random variables that quantifies the extent
to which uncertainty in one random variable is reduced by
knowledge of the state of the other random variable. The MI
analysis further identified significant relationships between
variables. The structure of the network was then developed by
exploring different combinations of potential variable
relationships in order to optimize the model’s performance.

The Project Agent’s Bayesian network is shown in Figure 2. We
have partitioned the model structure into three tiers in order to
more easily associate collections of random variables with their
role in the simulation structure. Software engineering and project
metrics from the Developer Agents are accumulated and entered
as known values into the nodes at the Acquisition Tier of the
network. Discretization of continuous input values was
accomplished using Equal Width Discretization (EWD) [24], with
each interval size based on standard deviation of the metric’s
underlying distribution. The six metrics identified in the
Acquisition Tier were found to be the most significant factors in
the MI analysis. The Project Decision Tier infers changes in the
state of the project based on the inputs. These changes include
whether or not the project is ready to make a software release, or
whether the maturity of the project has improved. The Project
Agent makes decisions on the state of each of these variables by
applying a random number generator to the distribution of belief
values associated with the appropriate node. The belief values are
calculated by determining the joint probability distribution using
the a priori SourceForge data and the current state of the nodes
from the Acquisition Tier. The Project Effects Tier uses the
inferred states of the Project Decision Tier to deduce the effects of
those states on variables such as the number of downloads of the
software product, or the group ranking (popularity) of the project.
The states and associated beliefs of the Project Effects Tier are the
data that drive the decisions made in the Developer Agents.

Figure 2 Project Agent Bayesian Belief Network Structure

At the core of each Developer Agent is a rule-based model that
adjusts its behavior based on the current state of the project. The
developed rules are based on heuristics, and are meant to
reproduce each individual developer’s degree of satisfaction with
the project and motivation to continue to work on it. A Developer
Agent’s likelihood to contribute to the project in terms of forum
messages, source code contributions, or bug fixes is dependent on
that developer’s perception of the project’s progress, prestige, and
utility. The Project Agent calculates and communicates values
for project utility, popularity, and maturity to each Developer
Agent, in addition to information regarding changes in project
membership or whether a release has occurred. The rule set in
each Developer Agent adjusts the probability that the developer
will make a contribution to the project based on the current values
of project-level information. The Developer Agent then
determines a level of participation in the project by applying a

random number generator to these adjusted probabilities, and
communicating the type and level of contribution back to the
Project Agent.

3.4 Social Modeling
The social element of the FLOSS project simulation was
accomplished by modeling the Developer Agents and their
interactions in a social network. Each Developer Agent is
represented as a node in the social network, and social
connections are represented as edges between nodes. For the
purposes of this open source software research, a social
connection between developers is defined as the co-occurrence of
message posts in the same forum in a given project. The message
posts, as acquired for each project through SourceForge, were a
factor in determining the level of contribution of a developer to
the simulated project.

4. MODEL VALIDATION APPROACH
Validating the proposed FLOSS model involves collecting and
using a set of software engineering data, and using that data to
confirm the ability of the model to characterize the data set, and
the ability of the model to make predictions for unknown data.
This section describes the approach to these activities including
an outline of the validation process, and a description of the
statistical tests and formulas used to quantify accuracy of fit and
predictive validity.

4.1 Validation Process
The general approach to validation of the agent-based simulation
of FLOSS projects is to train the model with the software
engineering data and then measure the ability of the model to both
accurately represent the distribution of selected measures for a
given project, and accurately predict the distribution of those
measures.

Figure 3 Model Validation Process

The validation process for the agent-based simulation involves
three phases, and is depicted in Figure 3. Instrumentation is the
phase where the model steps through a predetermined number of
time-slices, but loads each of the random variables in the model
from the actual data. In effect, Instrumentation is the
initialization of the model to a specific project. In the Simulation
phase, the model is run, and both modeled and actual data values
for each of the random variables at each of the time slices are
recorded. The Validation phase is the statistical comparison of

the modeled and actual data. The specific tests that are used to
validate the model are described in Sections 4.2 and 4.3.

In this validation exercise, the model was instrumented with
actual project data for 9 time slices (i.e., 9 months of data), and
then simulated for 1, 3, 6, 9, and 12 additional time slices. A
“time slice” refers to a calendar month, which is the rate at which
the counts for message post, source code contributions, etc. are
calculated and recorded at the SourceForge Research Data
Archive. At each interval, an assessment of the Accuracy of Fit
and Predictive Validity were recorded. Each of the charts that
present validation results use the projected (simulated) time slice
values to show the trends for the Accuracy of Fit and Predictive
Validity of each variable as the simulation progressed.

4.2 Determining Accuracy of Fit
The Accuracy of Fit measure is a quantitative determination of
how well a model represents the underlying data. It is a measure
that indicates the correctness of the model with respect to the data
that was used to construct the model. Accuracy of Fit is
determined through an analysis of the Equality of Means and the
Equality of Variances between the modeled values of the open
source software measures and the associated actual values.

The Equality of Means Hypothesis Test [3] (see Figure 4)
quantifies the confidence that the mean value of two given
populations are equivalent. By comparing the Equality of Means
between actual open source software values and modeled open
source software values, the ability of the model to accurately
characterize the underlying data set is revealed. If the Test
Statistic (t) for the given quality measure is less than the critical
value (tn-ν,α/2) for that measure, then the null hypothesis must be
accepted, the means are determined to be equivalent, and the
model is said to provide an accurate fit for the underlying data.
For this study, a confidence of α = 0.9, or 90% was used for all
Equality of Means calculations. Thus, there is 90% confidence
that all Equality of Means determinations are correct.

Figure 4 Hypothesis Test for Equality of Means

The approach to calculating the Equality of Variances is to use a
textbook rule of thumb test recommended in [1], where in
comparing the modeled data to the actual data, if the ratio of the
maximum variance value to the minimum variance value must be
less than three to consider the variances equivalent. The
application of this rule of thumb is appropriate in that it bounds
the relationship of the variances. The goal for the Equality of
Variances is not to get a quantifiable confidence on the accuracy
of the modeled data (which is already accomplished through the
Equality of Means test), but to get a discrete indication that the

variance of the modeled data is on the order of the variance of the
actual data.

4.3 Determining Predictive Validity
The Predictive Validity is a measure of how accurately the model
predicts a variable using an unknown data set as input. It is a
quantitative way of determining how well a given model
characterizes an unknown. Predictive Validity is measured using
the Average Absolute Error (AAE) and Average Relative Error
(ARE). AAE and ARE describe the deviations of the actual data
from the modeled data, and are shown in Figure 5 and Figure 6 as
defined in [2].

Figure 5 Calculation of Average Relative Error

Figure 6 Calculation of Average Absolute Error

By definition, the lower the values of AAE and ARE, the more
closely the model approximates the actual data. The AAE and
ARE in determining Predictive Validity provide assurance that
the model developed is reliable in making predictions about
unknown data. In this study, ARE was used to validate lower
variance variables and AAE is used to validate higher variance
variables, where values can confound ARE results. These
measures have been used for the Predictive Validity of software
engineering models in prior work [12][13], and in the case of
ARE, a value of 0.25 or less (within 25% of actual value on
average) is considered acceptable [11] to provide a useful
prediction.

5. MODEL VALIDATION RESULTS
This section captures the results of applying the tests for
Accuracy of Fit and Predictive Validity to an agent-based
simulation that models group behaviors in the domain of FLOSS
development.

5.1 Accuracy of Fit Results
The results of applying the Accuracy of Fit statistical tests,
Equality of Means, and Equality of Variances are shown in Figure
7 and Figure 8. The Equality of Means analysis, shown in Figure
7, highlights the statistical threshold for this test as a black line.
The interpretation of this graph is that those data points below the

threshold line indicate that the simulation was able to maintain a
mean value consistent with the underlying data for those metrics.
Similarly, data points above the threshold indicate that the
simulation diverged from the distribution upon which the
simulation is based. Figure 7 shows that the mean values of four
of the five FLOSS success measures were consistent with their
actual mean values for up to three time slices. In the case of
Group Membership, the mean value was consistent for nine
simulated time slices. Thus the model performed well in
remaining consistent with the underlying mean values of the data
for short-term simulation, but became less consistent as the
simulation progressed. The Group Popularity was an exception in
this test, and is discussed further below. Only two measurement
points are shown for Group Popularity to maintain a viewable
scale for the figure, but the Test Statistic value continued to
increase for 6, 9, and 12 time slices.

Figure 7 Equality of Means Validation

The results of the Equality of Variances test, shown in Figure 8,
are similar to the Equality of Means in their interpretation.
Values above the threshold line indicate points of unequal
variance between actual and simulated data, and values below the
threshold indicate points of consistency across the variances. The
model did very well at simulating the variances for modeled
values consistent with the underlying FLOSS data. The most
striking exception, as with the Equality of Means test, is the
Group Popularity measure.

Figure 8 Equality of Variances Validation

For both of the Accuracy of Fit statistical tests, the model’s lack
of ability to represent the Group Popularity (SourceForge Group
Ranking) measure is unexpected. The developed agent-based
simulation performs well in modeling this measure for one time
slice, and then its distribution quickly diverges for subsequent
time slices. We postulate that Group Popularity is modeled
poorly because the assumptions regarding a group’s influence on
its popularity were flawed. In the agent-based simulation of
FLOSS environments, each measure is calculated with the
assumption that the actions and interactions of individuals in the
group are causal factors in the emergence of group behavior. In
the case of Group Popularity, this assumption does not hold
because popularity is relative to the other groups in the
environment. For example, Group Ranking, which is the
SourceForge FLOSS measure for popularity, is relative to the
popularity of the other projects on the web site. That is, it is not
only the efficiency and organization of one group that affects its
popularity, but that of all groups relative to each other. Because
the current model is focused on the simulation of a single FLOSS
group, it does not account for the presence and efforts of other
groups. Thus, it is unlikely that it will be able to represent Group
Popularity accurately. This is confirmed through the results of
the Accuracy of Fit for that measure.

5.2 Predictive Validity Results
The results of applying the Predictive Validity tests, ARE and
AAE, are shown in Figure 9 and Figure 10. The lower variance
FLOSS success measures are shown in the ARE results in Figure
9. Recalling that an acceptable threshold for ARE is 0.25 or less,
any values below the threshold line indicate that the model is a
good predictor for that variable. The chart shows that for early
predictions, two of the three variables are acceptable predictors.
For both of those variables, the Number of Events and the Group
Maturity, the model was a good predictor for up to three projected
time slices. Group Membership was not as easily predicted in the
earlier time slices, but converged towards the accuracies of the
other variables at approximately the 6th time slice of simulation.

Figure 9 Average Relative Error (ARE) Validation

Figure 10 shows the AAE values for the high variance measures
used to characterize FLOSS project success. These values are not
normalized and so cannot be compared to a threshold. However,
they can be analyzed in the context of their ranges. Group
Popularity, for example, is instantiated in the model as the
SourceForge Group Ranking measure, which has a range
equivalent to the number of SourceForge projects (~200,000). So,
an average error of approximately 5,000 for Group Popularity in
the first time slice is surprisingly accurate given the range of the
metric. Similarly, the Group Utility measure, represented in the
model as the Number of SourceForge downloads, is relative to a
range of tens of thousands. Similar to the success variables
analyzed through ARE, the AAE values for Group Utility and
Group Popularity indicate the model is a reasonable predictor of
near-term future values, but its performance degrades
significantly as the simulation progresses. More analysis is
needed to refine the model such that its predictive performance
can be improved.

Figure 10 Average Absolute Error (AAE) Validation

The results presented in this section are the first steps in
simulating the behavior of social groups using FLOSS data as a
basis for modeling, and are promising as an initial attempt. We
expect the Accuracy of Fit and the Predictive Validity to improve
further as the model structure is refined and the scope of variables

modeled is increased. The intent is to mature this model to be
more robust and to represent a full spectrum of group and
individual attributes that can be represented through real data sets
when available.

6. CONCLUSION
We have developed a data-based model for group behavior that
leverages FLOSS data and agent technology to produce a
simulation that accurately represents the source data set. Using
this model, we have been able to predict for group-level behaviors
such as group membership changes, group efficiency and
popularity, and the occurrence of group-level events or actions.
We intend to extend this work to analyze the following:

 Model the self-organization of groups in order to
identify those factors that contribute to a group
attracting members,

 Explore in more depth the relative impact of each
category of individual contributions on the project’s
success metrics,

 Model an environment with multiple groups that have
low-coupling interactions, and

 Extend the model of individual developers to create a
data-based model of individual behavior.

We believe the FLOSS environment provides a unique
opportunity to quantitatively measure group behavior. Individual
contributions are concretely tracked and measured in terms of
both work products and social interactions. We intend to leverage
this environment to explore a data-based model for group
behavior that is applicable in the context of software engineering,
but also to a variety of other domains.

7. ACKNOWLEDGMENTS
This document was prepared by Oak Ridge National Laboratory,
P.O. Box 2008, Oak Ridge, Tennessee 37831-6285; managed by
UT-Battelle, LLC, for the US Department of Energy under
contract number DE-AC05-00OR22725. This work was
supported in part by the Office of Naval Research
(N0001408IP20066). The views and conclusions contained in this
document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of
the Office of Naval Research, the Department of Energy or the
U.S. government.

This manuscript has been authored by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the U.S. Department of
Energy. The United States Government retains and the publisher,
by accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for
United States Government purposes.

8. REFERENCES
[1] A.M. Dean and D.T. Voss. Design and Analysis of

Experiments. Springer-Verlag New York, Inc., New York,
NY, 1999.

[2] T.M. Khoshgoftaar, B.B. Bhattacharya, and G.D.
Richardson. “Predicting Software Errors, During
Development, Using Nonlinear Regression Models: A
Comparative Study.” IEEE Trans. Rel., 41(3):390-395,
September 1992.

[3] W. Mendenhall and T. Sincich. Statistics for Engineers and
the Sciences. Prentice-Hall, Upper Saddle Ridge, NJ, 4th
edition, 1995.

[4] University of Notre Dame. “SourceForge Research Data
Archive (online)”. https://zerlot.cse.nd.edu. Department of
Computer Science and Engineering, University of Notre
Dame. May 2008.

[5] SourceForge, Inc. “SourceForge Open Source Software
(online)”. http://sourceforge.net. SourceForge, Inc. 2008.

[6] K. Crowston, H. Annabi, J. Howison, and C Masango.
“Towards a Portfolio of FLOSS Project Success Measures.”
In Collaboration, Conflict and Control: The 4th Workshop
on Open Source Software Engineering, International
Conference on Software Engineering (ICSE) 2004, pp. 29-
33, 2004.

[7] K. Crowston, H. Annabi, and J. Howison. “Defining Open
Source Project Success.” In 24th International Conference
on Information Systems, 2003.

[8] K. Ngamkajornwiwat, D. Zhang, A.G. Koru, L. Zhou, and R.
Nolker. “An Exploratory Study on the Evolution of OSS
Developer Communities.” In Proceedings of the 41st
Hawaii International Conference on System Sciences, 2008.

[9] J. Hahn, J.Y. Moon, and C. Zhang. “Impact of Social Ties
on Open Source Project Team Formation.” In Proceedings
of the Second International Conference on Open Source
Systems, Como, Italy, June 8-10, 2006.

[10] Mozilla Foundation. “mozilla.org (online).”
http://www.mozilla.org. Mozilla Foundation, 2008.

[11] S.D. Conte, H.E. Dunsmore, and V.Y. Shen. Software
Engineering Metrics and Models. Benjamin/Cummings,
Menlo Park, CA, 1986.

[12] J.M. Beaver and G.A. Schiavone. “Spatial Data Analysis as
a Software Quality Modeling Technique.” In Proceedings of
the Fifteenth International Conference on Software
Engineering and Knowledge Engineering, San Francisco,
CA, July 2003.

[13] V. Shen, T. Yu, S. Thebout, and L. Paulsen. “Identifying
error-prone software – An empirical study.” IEEE
Transactions on Software Engineering, 11:317-323, April
1985.

[14] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G.
Balan. “MASON: A Multiagent Simulation Envoronment.”
Simulation 81: 7, pp. 517-527, July 2005.

[15] Linux Online, Inc. “Linux Online! (online).”
http://www.linux.org. Linux Online, Inc., 2008.

[16] CollabNet, Inc. “OpenOffice.org: the free and open
productivity suite (online).” http://www.openoffice.org.
CollabNet, Inc., 2008.

[17] The Apache Software Foundation. “The Apache Software
Foundation (online).” http://www.apache.org. The Apache
Software Foundation, 2008.

[18] K. Crowston, K. Wei, Q. Li, and J. Howison. “Core and
periphery in Free/Libre and Open Source software team
communications.” In Proceedings of the 39th Hawaii
International Conference on System Sciences, 2006.

[19] K. Crowston, H. Annabi, J. Howison, and C. Masango.
“Effective work practices for FLOSS development: A model
and propositions.” In Proceedings of the 38th Hawaii
International Conference on System Sciences, 2005.

[20] J.R. Hackman. “The design of work teams.” In The
Handbook of Organizational Behavior, J.W. Lorsch, Ed.
Prentice-Hall, Englewood Cliffs, NJ, 1986, pp. 315-342.

[21] T. Bayes. “Essay Towards Solving a Problem in the
Doctrine of Chances.” Philosophical Transactions of the
Royal Society of London. 53:370-418, 1763.

[22] S.H. Kan. Metrics and Models in Software Quality
Engineering. Addison-Wesley, 1995.

[23] I. Guyon and A. Elisseeff. “An Introduction to Variable and
Feature Selection.” Journal of Machine Learning Research.
3: 1157-1182, 2003.

[24] J. Dougherty, R. Kohavi, and M. Sahami. “Supervised and
unsupervised discretization of continuous features.” In
Proceedings of the 12th International Conference on
Machine Learning, 1995.

