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ABSTRACT 

 
 

The ability to quickly understand large volumes of data stream is of great interest to industry, 
academia, and government. In addition, it is a critical challenge in many application domains such as 
Internet news feed analysis, network intrusion detection systems, and analysis of scientific data. Real-time 
pattern recognition from the data streams is a promising approach to this challenge; however, due to the 
sheer speed and size of the data, data points must often be analyzed on the fly. The one-pass-through 
requirement and the lack of efficient clustering algorithms to identify and distinguish patterns limits the 
power and scalability of this approach. To overcome these limitations, in this report we introduce a novel 
clustering algorithm called pGrid. It is a parallel grid-based data stream clustering method that uses the 
MapReduce framework to quickly find patterns in the data streams. We present our algorithm with 
detailed examples and an in-depth performance evaluation against the D-Stream algorithm. Our 
evaluation results show that our algorithm performs comparably to the state-of-the-art methods in quality 
of the clustering results, while it is significantly more efficient and scalable. 
 
 
 
 

1. INTRODUCTION 
 

 
Clustering high-dimensional data in real time is a challenging problem with ample applications such 

as network intrusion detection systems (NIDSs), Internet news feed analysis, weather monitoring, 
emergency response systems, e-business, telecommunication, distributed sensor networks, and real-time 
analysis of scientific data. In these applications, large volumes of high-dimensional data flow to data 
collection centers at a high data rate. The processing of this data needs to be highly efficient in order to 
achieve real time response. For instance, a network intrusion detection system receives network traffic 
and the system logs at the rate of tens of gigabits per second. One way to capture abnormal activities from 
this massive amount of data is through efficient data clustering in real time. As the data rate and data size 
increase, parallel clustering algorithms become much more desirable since they are scalable and can 
process data in a timely manner. 

An efficient parallel clustering algorithm for data stream must address two challenges: i) the 
algorithm must form clusters without knowledge of the entire data set in one pass over each data point, 
and ii) the algorithm must be able to manage incremental updates of the clusters as new data arrive. Most 
of the existing parallel data clustering algorithms are limited to variations of the k-means algorithm 
[1,2,18], which cannot handle clusters of arbitrary shape very well. 

Chen and Tu proposed D-Stream [6], a grid-based partitional clustering algorithm for data streams. It 
outperforms many existing algorithms for data streams. However, it is not scalable and hence is not well 
suited for high-volume data streams. We believe a parallel grid-based algorithm can provide 
unprecedented accuracy and efficiency when clustering data streams.  In addition, because of its 
scalability, such an algorithm meets the demands of high-bandwidth real-time applications such as 
NIDSs. 

The efficiency of the Google search engine in retrieving information across a large network of 
computer clusters is largely attributed to the employment of the MapReduce framework [8]. In this work, 
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we apply the concept of MapReduce to data clustering and propose pGrid, a novel parallel grid-based 
clustering algorithm that is capable of handling dynamic data streams.  

The rest of the report is organized as follows: Section 2 introduces related work in the areas of data 
clustering and the MapReduce framework. Section 3 discusses the details of the pGrid algorithm. Section 
4 presents the performance evaluation, and finally, Section 5 concludes our discussion. 
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2. RELATED WORK  
 

In this section, we first review some of the existing data stream clustering literature. We then provide 
details of the D-Stream algorithm, which has much in common with the pGrid algorithm. Finally, we 
introduce the MapReduce framework and its Java realization called Hadoop. 

 
 
 

2.1 DATA STREAM CLUSTERING 
 

Clustering methods can be broadly classified into two main categories: partitional clustering 
algorithms and hierarchical clustering algorithms. Partitional clustering methods can be further divided 
into distance-based and density-based solutions. Distance-based methods are those that need to calculate 
distances (either pairwise or to the centroid) of data points before clustering. K-means [1,2,21], similarity-
histogram-based [13, 15], and Expectation Maximization (EM) [22] are examples of distance-based 
methods. As the name suggests, density-based methods form clusters by using data point density. Some 
examples include grid-based [6, 16], micro-cluster-based [1, 2, 7], kernel density estimation [18, 19, 20, 
14], and wavelet density estimation [11, 12] approaches. These solutions primarily target static data sets. 

In contrast to static data, a data stream is “a real-time, continuous, ordered (implicitly by arrival time 
or explicitly by timestamp) sequence of items. It is impossible to control the order in which items arrive, 
nor is it feasible to locally store a stream in its entirety [9].” There are two major categories of approaches 
to data stream clustering: single-phase schemes and two-phase schemes.  

 
 

2.1.1 Single-Phase Schemes 
 

Single-phase schemes can be viewed as a time window based version of static data clustering [10, 
17]. They first partition data streams into segments, and then conduct data clustering on each of these 
segments. In other words, single-phase schemes follow a divide-and-conquer strategy. 

Single-phase clustering schemes enable data stream clustering, but they are not true real-time 
clustering solutions. Moreover, they cannot capture the evolving characteristics of a data stream since 
they assign equal weights on outdated and recent data [6].  If the data stream evolves over time, these 
algorithms view it as several segments of static data: they cannot discover time-dependent patterns [6]. 

 
 

2.1.2 Two-Phase Schemes 
 

A two-phase scheme consists of an online component and an offline component [1, 2, 3, 4, 19]. The 
online component processes the raw data stream and generates a statistical summary of the data stream. 
The offline component is triggered periodically and uses the statistical summary calculated by the online 
component to generate clusters. Two-phase data stream clustering schemes are more time efficient than 
single-phase schemes because the clustering process, which is the most time-consuming process, is only 
executed periodically. As a result, two-phase schemes have been the most widely used data stream 
clustering methods in recent years. 

A grid-based clustering algorithm falls in the class of the two-phase schemes: it first partitions the 
data space into discretized grids. While the data stream is active, the online component projects data onto 
the grids. The offline component is triggered periodically to cluster the grids based on the extracted 
features, or characteristic vectors, of the grids captured in the online phase. D-Stream is a grid-based, two-
phase clustering algorithm [6]. We discuss the details of this algorithm in the next section.  
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2.2 D-STREAM: A TWO-PHASE GRID-BASED CLUSTERING ALGORITHM 
 
 
2.2.1 Definitions 
 

 We summarize some of the important notations and definitions introduced by Chen and Tu’s D-
Stream as follows [6]:  

• d : the dimension of the data. 
• g: a grid and the smallest unit for clustering. 
• len : the number of partitions on each dimension, i.e., the number of grids in a dimension. 
• Beta: a constant used to define sporadic grids (see below). 
• Density Coefficient = 

 

λ(tc − ta ) , where λ (0≤λ≤1) is the decay factor, tc is the current time, and 
ta is the time when the data point arrived.  

• D: Grid Density, D, is the sum of the density coefficients of all data points. It is updated 
every gap time interval. Dm and Dl represent the upper and lower bound of density threshold 
set by the algorithm. 

• Dense Grids: grids that have D ≥ Dm. 
• Transitional Grids: grids that have Dl ≤ D ≤ Dm. 
• Sparse Girds: grids that have D≤ Dl. 
• Sporadic Grids: sparse grids that have very few data and can be removed before clustering. 

Characteristic Vector: It is a tuple (tg, tm, D, label, status), where tg is the last time g was updated, tm is 
the last time g was removed as a sporadic grid, D is the grid density at the last update, label is the class 
label of the grid, and status={SPORADIC, NORMAL}. 
 
 
2.2.2 The D-Stream Algorithm  
 

  Fig. 1 The D-stream algorithm [1]. 
 
 
The online component of D-Stream first projects data points onto corresponding grids, and then 

updates the characteristic vector. The offline component combines dense and transitional grids which are 
neighboring grids into clusters – neighboring grids are adjacent grids on the kth dimension and share the 
same index values on all other d-1 dimensions. The offline process is iterative until the clustering result 
converges.  
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More specifically, D-Stream assumes that the model has a discrete time step, where the time stamps 
are integers starting from 0. When the algorithm first starts, we need to initialize an empty hash table 
called grid_list. While the data stream is active, we first read a new data record and determine the density 
grid g that contains it. If g is not in the current grid_list, we insert g into grid_list; otherwise, we keep the 
current grid_list. Then we update the characteristic vector of g. If time equals gap, which is a pre-defined 
parameter, we call the function initial_clustering(grid_list). Otherwise, if time is a multiple of gap, then 
we detect and remove sporadic grids from grid_list and call the function of adjust_clustering(grid_list). 
The definition of sporadic grid is in Section 3.1. time is increased by 1 each time we finish the processing 
of one data record.  

Compared with K-means based methods, D-Stream has the advantages of being able to find clusters 
of arbitrary shapes, can handle noise well, and does not require any prior knowledge of the number of 
clusters. In addition, D-Stream partitions the data space into discretized grids and summarizes the 
characteristics of the data stream. By doing so, the amount of information being maintained for clustering 
is significantly reduced. Nevertheless, the D-Stream algorithm has some disadvantages.  First, it 
sequentially examines neighboring grids on all dimensions, which is very time-consuming. Second, it 
does not address the sensitivity of the resulting number of clusters to different parameters, which may 
have significant impact on the class purity measures. 

In this report, we propose a novel parallel grid-based approach called pGrid. The proposed pGrid 
improves the efficiency of the offline component of the D-Stream algorithm. The work also presents 
results of sensitivity studies that shed light on the relationship between different parameters and the 
number of generated clusters. The clustering process is designed to take advantage of the MapReduce 
framework and pGrid is implemented using Hadoop, a Java implementation of the MapReduce concept 
[5]. 
 
 
2.3 THE MAPREDUCE FRAMEWORK 
 

MapReduce is designed to support parallel computations over large data sets on clusters of computers. 
The key components of the MapReduce framework include the input reader, the Map function, the 
partition function, the compare function, the Reduce function, and the output writer.  

Data are fed into the Map function as <key, value> pairs. Map function produces one or more 
intermediate values along with new output keys. In the Reduce function, all the intermediate values of a 
given output key are combined together into a list. The lists are then combined into one or more final 
values for the output key.  

Here is an example of MapReduce. Assume that we have a set of documents, and we want to count 
the term frequency of each word in the document set. This application can be implemented by using the 
MapReduce framework. 

 

  
  Fig. 2. The input and output of MapReduce in the term frequencey count example. 

 
 Suppose we have two documents: doc1 “Hello world” and doc2 “Hello ORNL”. The keys are “doc1” 

and “doc2”, while the values are “Hello world” and “Hello ORNL”, respectively. In the Map function, we 
need to convert the input pairs <k1, v1> to output pairs List(<k2, v2>), where k2 and v2 are new key and 
value. In our case, we use the words in the documents, namely “Hello, world, ORNL” as k2. The value of 
the output is the term frequency of each word. As illustrated by Fig. 3, the output of the Map task is 
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“<Hello, (1,1)>”, “<world, 1>” and “<ORNL, 1>”.  
The second function is Reduce. In the example, the new key (k3) after Reduce remains to be the same 

key as k2, which is a word in the documents. However, the value is changed to the summation of 
frequencies of a word in all documents. After Reduce, the final output is “<Hello, 2>”, “<world, 1>” and 
“<ORNL, 1>”.  

 

  
Fig. 3. A term frequency count example. 

 
 
A generic architectural view of the MapReduce framework is shown in Fig. 4.  
 
 
 

  
Fig. 4. The MapReduce framework. 

 
Hadoop is a Java implementation of the MapReduce framework [5]. It divides the application into 

many small fragments of tasks. Each task may be executed or re-executed on any node of a computer 
cluster. Hadoop also provides a fault-tolerant distributed file system and it automatically handles node 
failures. We implement the pGrid algorithm using Hadoop. Details of pGrid are discussed in the 
following section. 
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3. THE PGRID ALGORITHM 
 
 

In this section, we first introduce the basic definitions and concepts of the pGrid algorithm. Then we 
describe the major workflow and key components, followed by two examples. Finally, we analyze the 
computational complexity of the algorithm. 

 
 

3.1 BASIC DEFINITIONS  
 

pGrid is a parallel, grid-based, two-phase clustering algorithm for data streams. Like D-Stream, it 
partitions the multi-dimensional data space into grids and clusters the grids instead of raw data points. In 
our discussion, we follow all the notations and definitions of D-Stream as described in Section 2.2; we 
will introduce new definitions related to pGrid as the discussion goes along. 

Definition 3.1.1 (gridID) The unique identifier of a grid, e.g., g0, g1, …  

Definition 3.1.2 (gridIndex) For a grid, the gridIndex is a d-dimensional vector <v1, v2, …, vd-1, vd>, 
where vk is the index of the grid on the kth dimension.  

We use the (gridId, gridIndex) pair to uniquely identify a grid g. 
 
 

3.2 THE PGRID WORKFLOW 
 

In this section, we will discuss the general workflow of the pGrid algorithm (Fig. 5).  
 
 
 

  
Fig. 5. The workflow of the pGrid algorithm. 

 
We partition the d-dimensional data space into grids, where each dimension contains len partitions. 

The workflow consists of an online component and an offline component. Like D-Stream, the online 
component is invoked whenever a new data point arrives. The incoming data point is projected onto its 
corresponding grid according to its attributes, and then the grid density is updated.  

In contrast, the offline component is triggered periodically after a certain time interval. Sporadic grids 
are removed. Only dense and transitional grids are considered for clustering at each time interval. The 
offline component first clusters grids on each dimension in parallel into local clusters, and then combines 
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the local clusters on different dimensions to obtain the final clustering result (global clusters). The offline 
component is designed and implemented by using the MapReduce framework. Parallel execution of the 
clustering process significantly reduces the computation time and scales well to high dimensional data. 
This is the major distinguishing factor from D-Stream, in which the clusters are generated by sequentially 
inspecting grids along all dimensions. We will discuss both the online and offline component in detail in 
the following sub-sections.  

 
 

3.2.1 The Online Component 
 
      With the data space partitioned, when a new data point xi <xi,1, xi,2, …, xi,k, …xi,d> comes, the online 
component projects it into its corresponding grid with gridIndex <vi,1, …, vi,k, …vi,d-1, vi,d> using the 
following formula: 

                                         
,

,
,

,

         

-1                 
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i k k

ki k
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3.2.2 The Offline Component 
 

This section defines concepts related to parallel clustering, describes the clustering rules, and provides 
a 2-D example that illustrates the clustering process. 

   
 
 

3.2.2.1 Cluster definitions 
 

Definition 3.2.2.1.1 (Possible Neighboring Grids) If two grids g0: (g0, <v0,1, …, v0,k, …v0,d-1, v0,d>) 
and g1: (g1, < v1,1, …, v1,k,.., v1,d-1, v1,d>) have the same indices in d-1 dimensions except the kth dimension, 
they are possible neighboring grids on the kth dimension. Particularly, if g0: (g0, <v0,1, …, v0,k, …v0,d-1, 
v0,d>), …, gn : (gn, <vn,1, …, vn,k, …vn,d-1, vn,d>) are a group of possible neighboring grids on the kth 
dimension, which satisfy v0,m=v1,m=…=vn,m=vm (m=1,…d, m≠k), then we call g0,…, gn a group of possible 
neighboring grids on the kth dimension with IndexKey <v1, v2,…, vk-1, * , vk+1, …, vd>. The value of the kth 
dimension, vk, is called ValueInDim of a grid.  

 
Definition 3.2.2.1.2 (Neighboring Grid) If two grids g0: (g0, <v0,1, …, v0,k, …v0,d-1, v0,d>) and g1: (g1, 

<v1,1, …, v1,k,.., v1,d-1, v1,d>) are adjacent in the kth dimension (k≤d), and have the same indices in all other 
d-1 dimensions, i.e.,  v0,m=v1,m (m=1,…,d, m≠k) and v0,k =v1,k±1, then g0 and g1 are neighboring grids on 
the kth dimension. Two grids can be neighboring grids on the kth dimension only if they are possible 
neighboring grids on the kth dimension, and their ValueInDim are next to each other. 

 
Definition 3.2.2.1.3 (Local Cluster) Cluster generated by combining possible neighboring grids with 

the same IndexKey. Clustering Rule 1 in section 3.2.2.2 provides the details. 
 
Definition 3.2.2.1.4 (Global Cluster) Cluster generated by merging local clusters according to 

Clustering Rule 2 described in section 3.2.2.2. Global Clusters are the final clustering results of the 
pGrid algorithm.  
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3.2.2.2 Clustering rules 
 

Clustering Rule 1 governs the creation of local clusters and Clustering Rules 2 defines how global 
clusters are generated. 

Clustering Rule 1: When we cluster grids that have the same IndexKey on the kth dimension, dense 
grids that are neighboring grids form a local cluster on the kth dimension. If a transitional grid has one 
neighboring grid that is dense, the transitional grid belongs to the local cluster to which the dense grid 
belongs. If a transitional grid has two neighboring grids that are both dense and belong to two different 
local clusters, the transitional grid belongs to the larger local cluster. 

Clustering Rule 2: If two local clusters contain the same grid, they form a global cluster. If two 
global clusters contain the same local cluster or global cluster, these two global clusters form a larger 
global cluster. For instance, if {g0, g1} ⊆ LocalCluster0 and {g1, g2} ⊆ Localcluster1, then {g0, g1, g2} ⊆ 
GlobalCluster0. 
 
 
 
3.2.2.3 A 2-D MapReduce clustering example 
 

Now we will walk through a clustering example and apply the pGrid algorithm on 2-dimensional 
data. The data space is partitioned into 3*3 grids. In other words, the dimension d=2 and the number of 
partitions on each dimension len=3. We have 9 grids in the data space, namely g0, … g8. The (gridID, 
gridIndex) pairs of these 9 grids are shown on the upper-left table in Fig. 6. Assume that among the 9 
grids, only g1, g2, g5, g6 are dense grids, while the other grids are sparse grids. For simplicity, we only 
include dense grids in this example. Note that only dense grids and transitional grids are clustered. 

There are two levels of parallelism in this process: on the level of each dimension and on the level of 
IndexKey within a dimension. 

First level parallelism: The offline component clusters the dense and transitional grids along the X 
and Y dimensions in parallel. Since the clustering processes on both dimensions are the same, we only 
describe how local clusters are generated along the Y dimension.  

On the Y dimension, we have three different IndexKeys <0,*>, <1,*>, <2,*>. Grid g1 (1,0)’s 
IndexKey is <1,*> and its ValueInDim is 0. Each IndexKey uniquely identifies a group of possible 
neighboring grids on that dimension. We mark groups of possible neighboring grids by red circles in Fig. 
6.  

Second level parallelism: Now we start to form local clusters by using Clustering Rule 1. We 
examine all the possible neighboring grids with the same IndexKey in parallel. For instance, when we 
process IndexKey <0,*>, we scan grids g0, g3 and g6. In the example, g6 is a dense grid, while g0 and g3 are 
sparse grids. Therefore, g6 itself forms a local cluster a1. Similarly, we generate local clusters a2 and a3 on 
the Y dimension.  

The next step is to combine these local clusters into global clusters. According to Clustering Rule 2, 
a1 and b1 should be combined to form a global cluster glb1, since they both contain grid g6. Local clusters 
a2 and b3 share g1, a3 and b2 share g2, a3 and b3 share g2, and therefore, local clusters a2, b2, and b3 are 
combined into global cluster glb2.  
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Fig. 6.  A 2-D example of the MapReduce clustering. 
 
 
3.2.2.4 Implementing pGrid using MapReduce 
 

The implementation of the pGrid algorithm involves three Map/Reduce processes (Fig. 7). Each 
Map/Reduce process changes the <key, value> input. In this section, we describe each of the Map/Reduce 
step by using the same 2-D example as the one we have shown in section 3.2.2.3.  

 

  
Fig. 7. The MapReduce implementation. 

 
The output of each MapReduce process is the input of the next one. The initial input is the <gridID, 

gridIndex> pairs of all the dense and transitional grids. The output of the first MapReduce process is a list 
of IndexKeys (i.e., <v1, v2,…, vk-1, * , vk+1, …, vd>) and all the possible values associated vk which is 
represented by the “*” in a IndexKey. The second MapReduce clusters the grids into local clusters 
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according to Clustering Rule 1. The third MapReduce combines the local clusters into global clusters 
according to Clustering Rule 2. 

We now use the same 2-D example to illustrate the three MapReduce processes. Fig. 8 shows the first 
MapReduce process. We obtain IndexKey and ValueInDim from a grid’s gridID. For instance, grid g1 
(1,0)’s IndexKey is <1,*> and its ValueInDim is 0. The outputs of the First MapReduce are lists of 
ValueInDims grouped by IndexKeys.  

 

  
 

Fig. 8. The 1st MapReduce process of the 2-D Example. 
 
The second MapReduce generates local clusters on each dimension in parallel and on each IndexKey in 
parallel (shown in Fig. 9). Take the IndexKey <2, *> for example. On the Y dimension, there are two 
dense grids which have <2, *> as their IndexKey: g1 and g2 (The grid coordinates can be found in Fig. 6). 
Their ValueInDim are 0 and 1 respectively. Since g1 and g2 are dense grids with adjacent ValueInDims, 
they are clustered into the same local cluster a3. The output is a list of gridIDs and the list of local clusters 
to which it belongs. Note that each grid may belong to more than one local cluster depending on which 
dimension we are examining. 
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Fig. 9. The  2nd MapReduce process of the 2-D example. 

 
The third MapReduce is illustrated in Fig. 10. The Map function combines local clusters into global 

clusters, and Reduce sorts the result with globalCltID as the key. 
 

  
Fig. 10. The 3rd MapReduce process of the 2-D example. 

 
 

3.2.2.5 A 4-D MapReduce clustering example 
 

When we move to high-dimensional data spaces, the IndexKey becomes more complicated. In this 
section, we use a 4-D example to demonstrate how the pGrid algorithm applies to high-dimensional data. 
Fig. 11 is an example of 4-dimensional data. There are 6 dense grids: g0-5. g0, g1, g2, and g3 have the same 
IndexKey of <*, 0, 0, 0>, while g4, g5 have the same IndexKey of <*,0,0,1>. Therefore, we have two 
groups of possible neighboring grids. We then generate local clusters in parallel on these two groups with 
different IndexKey. 
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                 Fig. 11. A 4-D pGrid clustering example. 

 
In the group of possible neighboring grids represented by IndexKey <*, 0, 0, 0>, g0 and g1 are 

adjacent on the first dimension, so they form one local cluster. g2 and g3 form two separate local clusters 
because they are not adjacent to any other dense grid. In the group of possible neighboring grids 
represented by IndexKey <*, 0, 0, 1>, g4 and g5 are adjacent on the first dimension, they form another 
local cluster. The same process repeats on the 2nd, 3rd and 4th dimensions. Then we combine all the local 
clusters into global clusters following Clustering Rule 2.  

 
 

3.3 COMPUTATIONAL COMPLEXITY ANALYSIS 
 

We now compare the computational complexity of the D-Stream and pGrid algorithms.  
Each time the offline component runs, D-Stream iteratively adjusts the clusters by merging or 

dividing them. In contrast, pGrid is not an iterative method. Because the number of iterations that the D-
Stream algorithm executes varies depending on the data set, we only consider one iteration in the 
following analysis.  

At each iteration of the D-Stream algorithm, in the worst-case scenario, there are lend grids in 
memory. For each of these grids, one needs to examine its neighboring grids in all d dimensions. 
Therefore, the computational complexity is O(lend * d). But in practice, the number of grids in memory is 
much smaller, under the assumption that the data space is sparse. 

In the pGrid algorithm, Map2 and Map3 functions are on the critical path of the computation. In 
Map2, we need to scan all the grids with the a certain IndexKey, which costs O(len). Since different 
IndexKeys are processed in parallel, the total time needed for Map2 remains to be O(len), regardless of 
the number of IndexKeys. In Map3, each grid has at most d local cluster (localClt) assignments, so we 
only need to scan these d local clusters (localClts) and append the corresponding mapping in the global 
mapping list. As a result, the computation time is O(len+d). Note that we did not take into consideration 
the overhead introduced by the MapReduce task initialization process. 



 

 

4. PERFORMANCE EVELATION 
 
In this section, we present the data set, experiment setup, performance metrics, and the analysis of 

experimental results.  
 
 

4.1 DATASET  
 
The data set we used in our experiments is the KDD Cup 99’ network intrusion data from the 

MIT Lincoln Lab [23]. The raw training data was about four gigabytes of compressed binary tcpdump 
data from seven weeks of network traffic. This was processed into about five million connection 
records. Similarly, the two weeks of test data yielded around two million connection records. In our 
experiments, we used a subset of 12,000 data points, where each data point represents a connection. 
Each data point contains 34 attributes. Fig. 12, 13, and 14 summarize the main information. More 
details about these attributes can be found in [1].  

There are 5 main categories of connection types, which correspond to the normal connection and 
four types of attacks: DOS, R2L, U2R, and probing. Each attack type further contains several sub-
categories. The whole dataset contains 22 sub-categories. The subset we use contains 8 of the 
subcategories.  

We first normalize all attributes of the data set to [0,1]. We screen a sample set of data points X 
of size n (n=12,000 in our experiments), X={xi: <xi,1, …, xi,k, …xi,d-1, xi,d>, i=1,…n}. The data points 
we used have non-negative values on all dimensions. Then we calculate the normalization factor of 
the kth dimension as 
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We normalize the kth dimension to [0,1] by dividing xi,k by kθ . If the outcome value is larger than 
1, we set it to 1. This is to reduce the impact of the outliers which are too large relative to the average 
value. Then we partition that dimension into len partitions. As a result, we obtain lend grids in the data 
space.  

  
Fig. 12. Basic features of individual TCP connections. 

  



 

 

  
Fig. 13. Content features within a connection suggested by domain knowledge. 

 

  
Fig. 14. Traffic features computed using a two-second time window. 

 
 

 
4.2 EXPERIMENT SETUP 
 

We run all the experiments on a PC with a 2.79GHz CPU and 3GB memory. The pGrid algorithm 
is implemented with Hadoop 0.16.4 and JDK5.0 under Cygwin. For comparison, we implemented D-
Stream in Eclipse with JDK5.0.  

Unless otherwise noted, the parameters are set to be the same as in [1]: len=25, dm=3.0, dl=0.8, 
beta=0.3, λ=0.998. The data stream speed is set to be 200 data points per time unit. Time unit is the 
measure of time in our data stream simulation.  

 
 

4.3 PERFORMANCE METRICS 
 

SSQ and cluster purity are the two performance metrics used extensively in data stream clustering. 



 

 

We also use the number of clusters to measure the difference between the clustering results and the 
ground truth.  

SSQ is the sum of square distance, which is defined as follows. If current time is tc, for a certain 
time horizon t starting from time tc -t, there are N data points coming in. Among them, N’ data points 
are assigned to some clusters, while the other N-N’ data points are outliers. For each data point pi, we 
find the centroid Cpi of its closest cluster, and compute the distance between pi and Cpi, d(pi, Cpi). 
Then the SSQ at time tc is defined as the summation of d2 (pi, Cpi) for all these N’ data points.  

Cluster Purity is defined as the average percentage of the dominant class label in each cluster. The 
higher percentage of the dominant class label in each cluster, the higher cluster purity is. 

The number of clusters is defined as the number of clusters in the clustering result at a certain 
time tc.  

 
 

4.4 EXPERIMENTAL RESULTS 
 
4.4.1 Overall Performance 
 

 In this section, we compare the pGrid and D-Stream algorithms by using the three performance 
metrics. The Time axis shows, when the performance metrics were calculated, how many time units 
have elapsed since the beginning of the data stream. Since the data set contains 12,000 data points and 
the stream speed is 200, the data stream lasts for 60 time units. We randomly choose 16, 30, 44, 58 as 
the times at which we measure the clustering quality, so that there are 14 time units in each time 
interval.  

  
Fig. 15. Average SSQ of pGrid and D-Stream. 

 

  
Fig. 16. Average cluster purity of pGrid and D-Stream. 

 
Fig. 15 shows the average SSQ of both the pGrid and D-Stream algorithms at different times. The 

results show that pGrid and D-Stream have similar performance on average SSQ. Since average SSQ 



 

 

is measured in logarithm, the difference is smaller than one order of magnitude, which is not 
significant. 

 
We notice that pGrid has different average SSQ with D-Stream, though it can be viewed as a 

parallel version of D-Stream. The reason is that the two algorithms treat transitional grids with slight 
difference. In D-Stream, if two clusters are connected only through a transitional grid, they will be 
separated into two smaller clusters. In pGrid, however, since we cluster on each dimension in parallel 
and combine the clustering results, we are unable to detect if some clusters are connected with each 
other only through a transitional grid. We argue that the density of a transitional grid is still 
comparatively high and does not affect the cluster result much; therefore, the result produced by 
pGrid is reasonable. This also explains the difference of cluster purity shown below. 

Fig. 16 shows the cluster purity of both algorithms. While both algorithms achieved high cluster 
purity (> 90%), pGrid’s cluster purity is slightly lower than D-Stream. However, the maximum 
difference between the two is less than 5%.  Note that the total number of clusters generated at each 
time unit may have significant impact on the cluster purity and average SSQ. Naturally, larger 
numbers of clusters will result in smaller average SSQ and higher cluster purity. Therefore, we 
conducted a set of experiments to investigate the number of clusters generated by each algorithm in 
comparison to the ground truth. 

 

  
Fig. 17. Number of clusters generated by pGrid and D-Stream compared with the ground truth. 

 
Fig. 17 plots the number of clusters generated by both algorithms and the ground truth. The 

ground truth is the actual number of clusters in the dataset, generated by manually labeling. Since the 
data stream evolves over time, at time 16 and 30, there are only 5 clusters in the data stream, but after 
time 44, the total number of clusters has increased to 8. As we can see that pGrid generates less 
number of total clusters than D-Stream in all cases and is closer to the ground truth. This explains 
why pGrid performed slightly worse than D-Stream in cluster purity. 
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Fig. 18. Average SSQ of pGrid with different len values. 

 



 

 

 
 

4.4.2 Sensitivity 
 

The computational complexity analysis in section 3.3 shows that the value of len is one of the 
determining factors of the computational cost for both algorithms, especially for the D-Stream 
algorithm. The larger the len value, the higher the computational cost. In this section, we study the 
impact of the parameter len on the performance of pGrid.  
 

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

16 30 44 58

Time (unit)

Cl
us

te
r 

Pu
ri

ty

len=20

len=25

len=50

len=60

len=200

  
Fig. 19. Cluster purity of pGrid with different len values. 
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Fig. 20. Number of clusters generated by pGrid with different len values. 

 
Experimental results indicate that average SSQ, cluster purity and number of clusters all have a 

general trend to decrease as len increases.  This can be explained as follows. Grids are used as 
approximations of the actual data points. This approximation may introduce errors in the clustering 
results, especially near the boundaries of clusters. A larger len value leads to finer grids, and therefore 
the grids are a closer representation to the actual data points. Thus, the total number of clusters 
generated by pGrid is closer to the ground truth. In fact, Fig. 20 shows that when len = 200, at time 44 
and 58, the number of clusters generated by pGrid is the same as the ground truth. The smaller 
number of clusters in turn causes the cluster purity to decrease, because if a cluster is assigned to each 
data point, the purity is guaranteed to be 100%. 

 
4.4.3 Parameter Influence on the Number of Clusters 
 

The experimental results indicate that the number of clusters has a direct impact on the cluster 
purity and SSQ. Therefore, we now study the parameter settings and discover patterns to control the 
number of clusters generated by pGrid. 

In the following experiments, we set speed=200, lamda=0.998. The results shown in the figures 
are the corresponding values at time t=60.    
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Fig. 21. Number of clusters generated by pGrid with different len at t=60. 
 
In Fig. 21, we set dm=3.0, dl=0.8, beta=0.3, and investigate how the value of len influences the 

number of clusters. We can see that when len=25, the number of clusters is the greatest.  
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Fig. 21. Number of clusters generated by pGrid with different dm at t=60. 
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Fig. 22. Number of clusters generated by pGrid with different dl at t=60. 

 
 
Figs. 21 and 22 show the relationship among the number of clusters, dm, and dl, where dm and dl 

are the thresholds of dense/sparse grid, respectively. The number of clusters decreases as dm 
increases. dl does not have a significant impact on the number of clusters generated by pGrid.  



 

 

 
5. CONCLUSION AND FUTURE WORK 

 
 
5.1 CONCLUSION  
 

In this report, we present a novel parallel grid-based clustering algorithm for high-dimensional 
data streams called pGrid. It uses the MapReduce framework to process each dimension in parallel. 
Experimental results show that pGrid performs comparably to the D-Stream algorithm in terms of 
average SSQ and cluster purity. In addition, pGrid explores the parallelism in the clustering process, 
and therefore it is much more efficient and scalable than the D-Stream approach, which is a sequential 
method. We expect applications that face the challenge of high volume, high rate data streams to 
significantly benefit from our algorithms. Some examples include NIDS and real-time news feed 
analysis. 

We presented a theoretical analysis of the computation complexity for pGrid. As the next step, we 
plan to conduct the speed and scalability tests on computer clusters. We are also interested in 
exploring the potential of pGrid on a much more distributed environment such as the cloud 
computing. 

 
 

5.2 FUTURE WORK  
 

In the future, we plan to extend the pGrid algorithm from the following directions: 
 

5.2.1 Efficiency Test 
 

We would like to test the pGrid algorithm on a computer cluster with MapReduce, gather 
experimental results of the efficiency, and compare it with D-Stream. Due to time limitations, we did 
not run an efficiency test on a large computer cluster. Although the pGrid algorithm has been proved 
to be more efficient, the overhead of running Hadoop cannot be ignored. For each clustering process, 
we need to initialize 3 MapReduce jobs, which may take significant amount of time. Therefore, an 
efficiency test is necessary in the future.  

 
 

5.2.2 An Alternative Performance Metric 
 
Most of the existing data stream clustering research uses SSQ and cluster purity as the 

performance metrics. However, neither of these metrics takes the number of cluster generated by the 
algorithm into account. If an algorithm generates a large number of clusters, each of the clusters will 
appear to be “more pure”, and the SSQ will be smaller. This becomes obvious when we think about 
an extreme example in which each grid itself becomes a cluster.  

As a result, we propose to incorporate the number of clusters as one of the metrics of clustering 
quality. A possible way to do this is to add a post-processing component in the clustering algorithm, 
which combines or splits the clusters based on similarities to get exactly the same number of clusters 
as the ground truth. We can then apply the same performance metrics, SSQ and cluster purity.  By 
doing so, we avoid favoring algorithms that generate large numbers of clusters and, therefore, make 
the comparisons fairer.   
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