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Abstract—In this paper, we propose information-theoretic 

approaches for comparing and evaluating complex agent-based 

models. In information theoretic terms, entropy and mutual 

information are two measures of system complexity. We used 

entropy as a measure of the regularity of the number of agents in 

a social class; and mutual information as a measure of 

information shared by two social classes. Using our approaches, 

we compared two analogous agent-based (AB) models developed 

for regional-scale social-simulation system. The first AB model, 

called ABM-1, is a complex AB built with 10,000 agents on a 

desktop environment and used aggregate data; the second AB 

model, ABM-2, was built with 31 million agents on a high-

performance computing framework located at Oak Ridge 

National Laboratory, and fine-resolution data from the 

LandScan Global Population Database.  The initializations were 

slightly different, with ABM-1 using samples from a probability 

distribution and ABM-2 using polling data from Gallop for a 

deterministic initialization. The geographical and temporal 

domain was present-day Afghanistan, and the end result was the 

number of agents with one of three behavioral modes (pro-

insurgent, neutral, and pro-government) corresponding to the 

population mindshare. The theories embedded in each model 

were identical, and the test simulations focused on a test of three 

leadership theories – legitimacy, coercion, and representative, 

and two social mobilization theories – social influence and 

repression.  The theories are tied together using the Cobb-

Douglas utility function. Based on our results, the hypothesis that 

performance measures can be developed to compare and contrast 

AB models appears to be supported. Furthermore, we observed 

significant bias in the two models. Even so, further tests and 

investigations are required not only with a wider class of theories 

and AB models, but also with additional observed or simulated 

data and more comprehensive performance measures. 

 
Index Terms—entropy, mutual information, agent-based 

models, social modeling, performance measures. 

 

I. INTRODUCTION 

gent-based modeling (ABM) has attracted increasing 

attention in the field of social computing as a main 

computational approach to social and economic systems 
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simulation. While simulations may give rise to interesting 

macro-level phenomena, the underlying micro and macro level 

processes may be far from realistic.  Nevertheless, this realism 

may be important to infer results that are relevant to existing 

theories of social and economic systems and to policy making. 

As a result, many new agent-based (AB) models have been 

proposed with wide applications. Some of the characteristic 

differences between these models are the resolution of the 

input data (aggregate vs. fine-resolution data), the computing 

framework (desktop vs. high-performance computing 

framework), and the assumptions of the implemented social 

theories (for instance, the weights assigned to each factor).  

Therefore, it is important to assess not only the predictive 

capability of the AB models for Human, Social, Behavioral, 

Cultural (HSBC) domain but also the ability to quantify and 

visualize the inherent differences in these models [8]. 

 The critical challenges in systematic evaluation of large-

scale social science simulations stem from the inherent 

multiscale attributes of HSBC processes, models, and theory, 

as well as from the inadequacy of data and case studies for 

calibration and validation purposes. The multiscale processes 

range from psychological profiles of leaders and aggregate 

crowd behavior to the behavior of institutions or 

organizations, and of ethnic, geographic, religious, linguistic, 

and racial groups. The need to adequately handle such 

processes across scales has spawned a wide range of 

multiscale social theories, which in turn may be competitive or 

complementary, and hierarchical or integrated. Also, 

“surprising” or unusual behavior at one scale may indeed be 

triggered by minor changes or abnormal behavior at another 

scale. Existing methods for the evaluation of theories, models, 

and systems relevant for HSBC or similar domains rely on the 

exploration of the hypotheses (or parameter) space and on 

empirical validation. These methods include active nonlinear 

tests of complex simulation models as well as structural and 

parametric sensitivity analysis for the evaluation of complex 

models [14]. These approaches rely on the design of 

computational experiments [9, 13] and empirical validation [7, 

10, 18]. Validation and evaluation in the context of M&S 

systems for HSBC or similar domains have received some 

attention from multidisciplinary scientific communities [3, 15, 

17]. 

 Given that models are all too imperfect and validation data 

are inadequate and noisy, traditional calibration and validation 

approaches are not likely to succeed. Systematic evaluation of 

models remains useful however, and is perhaps increasing in 

importance, as decision makers still need to know how to 

make best use of the available HSBC process understanding, 

theories and models, as well as how to utilize available data 
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and computational resources as optimally as possible. In these 

situations, systematic evaluation may have to take the form of 

characterization of the space of real-world processes and 

theoretical simulations. The insights gained may have to be 

qualitative (e.g., tribal loyalties dominate over individual 

ideologies in a certain region) or quantitative (e.g., based on 

structural or parametric sensitivity studies). In this paper, we 

present information-theoretic approaches for evaluating and 

comparing complex social simulations. 

 The remainder of this paper is organized as follows.  In 

Section II, we present the theory behind the information-

theoretic measures used in this paper for evaluating AB 

models. In Section III, we review the social theories embedded 

in each model and describe the computational 

implementations of the social theories.  The results of the 

comparison of two analogues AB models – ABM-1 and ABM-

2 – are discussed in Section IV. A short summary is presented 

in Section V. 

 

II. INFORMATION-THEORETIC MEASURES 

 In this section, we described two information-theoretic 

measures used in this paper. 

 

A. Entropy 

Formally, the entropy for a discrete process X of K classes is 

defined as: 

 

���� = � ���� log�����

�∈�

, 
 

where ���� is the probability of x in X. Entropy is typical 

interpreted as the number of bits required to encode and 

transmit the classification of a data item. If the entropy is 

smaller the data is more “pure” – all data items belong to the 

same class, then entropy is zero because there is only one 

outcome [5]. The entropy is larger for “impure” data. 

Therefore, entropy has been described as a measure of the rate 

at which environment appears to produce information. “The 

higher the entropy rate, the more information produced, and 

the more unpredictable the environment appears to be” [5]. If 

entropy is used as a measure of the predictability of classes, 

then the smaller the class entropy, the more predictable the 

class would be. For example, if all agents belong to one class, 

then the entropy is zero, and no bits need to be transmitted 

because the receiver knows that there is only one outcome; 

therefore, no uncertainty exists and the class predictability 

appears much higher. 

 For social simulation outputs, we used entropy as a measure 

of predictability in the number of agents over time. The 

smaller the entropy the more predictable the agents over time 

and the fewer the event types over time. 

 

B. Mutual Information 

The mutual information, ���; ��, of two discrete random 

variables X and Y can be defined as: 

 

���; �� = � � ���, �� log � ���,��
�����������

�∈��∈�
, 

 

where p(x,y) is the joint probability distribution function of X 

and Y, and p1(x) and p2(y) are the marginal probability 

distribution of X and Y respectively.  The mutual information 

measures (MI) the information that X and Y share; that is, it is 

a measure of how much knowing one of these variables 

reduces the uncertainty about the other. As an illustration, if X 

and Y are independent, then information about X does not 

provide any information about Y and vice versa, so their MI is 

zero. On the other hand, if X and Y are dependent, then all 

information provided by X is shared with Y; that is, knowing X 

determines the value of Y and vice versa. MI is symmetric 

(���; �� = ���; ��) and can also be written as: 

 

���; �� = ���� + ���� − ���, �� 

 

where H(X) and H(Y) are the individual class entropies and 

H(X,Y) is the entropy of the two classes considered as a joint 

process. An increase in MI between two classes could be 

described as an indication that the correlation between the 

classes is growing. Such a growth has been attributed as an 

evidence for a phase transition; an important feature for 

exploring emergent behavior. 

 In social simulations, we need to determine the effect of one 

class of agents on the behavior of another class of agents over 

time; therefore, we could find the “correlations” between 

events that take place in two classes of agents. The mutual 

information between two classes of agent X and Y can be used 

to study “correlations” in social simulation systems. The 

mutual information, in this case, measures the complete 

dependence, unlike linear correlations, which are measures of 

linear associations or rank-based measures that capture only 

monotonic dependence. 

 

III. THE SOCIAL THEORIES AND THEIR COMPUTATIONAL 

IMPLEMENTATIONS 

 A prototype experimental test-bed was designed to evaluate 

two ABMs – ABM-1 and ABM-2 – by maximizing a utility 

function. The ABM-1 model utilized a desktop environment 

and aggregated data/models. The ABM-2 model utilized high 

performance computing and fine-resolution data/models. 

Three leadership theories, specifically legitimacy, 

representative, and coercion, were implemented by assigning 

appropriate weights to each factor in the utility function. 

Neighbor interactions were modeled by using two social 

mobilization theories: (1) social influence and (2) resistance to 

repression. Four learning theories, each implemented for a 

change in support for a leader or change in ideology, were 

developed: socialization, homophily, results-based, and 

cognitive dissonance. Ninety-six combinations of theories 

resulted from the nine theories (three for leadership, two for 

social mobilization, and four for learning or psychological 

change, where each of the last four can be implemented for 

leadership or ideology change). The ninety-six theories were 

implemented for each ABM model along with various 

heuristics for a case study of Afghanistan. Although the 
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solutions utilized identical theories, the fine-grained 

implementations required slightly different heuristics.  
 

A. The Social Theories 

 The individual behavioral choices were modeled with one 

of two utility functions [4]: 

 

Cobb-Douglas: 

 

 = �1 − "�#$�1 − %�#&�1 − ��#'�1 − (�#)�1 − *�#+�1
− ,�#-�1 − .�#/  

 

Least Squares:  

 

 = 1 − 01"2 − 03%2 − 04�2 − 05(2 − 06*2 − 07,2
− 08.2 

 

The utility functions encompass seven factors: L is the agent’s 

loyalty to the leader �" ∈ 9−1,1:�, C is the coercion factor 

�% ∈ 9−1,1:�, I is ideology �� ∈ 9−1,1:�, E is economic 

welfare �( ∈ 9−1,1:�, V is security against violence�* ∈
9−1,1:�, F is the influence of “close” associates (geographic 

or social proximity), and R is repression and social influence 

for defying repression �. ∈ 90,1:�given as: 

 

<=� �0, �−>?@A�B� ∗ >?@A�D�
� ∗ <=���B2 − ED∗F2�, 0
, 
 

where A is the repressive activity in the area and ED∗F is the 

average behavior of agents within a certain region of the focal 

agent (a larger region than for influence). The weights are 

required to be non-negative, to be less than or equal to 1, and 

to sum to unity �G1 + G3 + G4 + G5 + G6 + G7 + G8 = 1�. 

The overall computational goal is to identify the behavior 

value (B) that would allow a citizen agent to maximize the 

value of her utility function. The seven components 

considered are: 

 

"H�=IJ�: 1 − " = 1 − LM ∗ =N> �O − D� 2;⁄  

 

%HRST?HA: 1 − % = 1 − SM ∗ =N> �O − D� 2;⁄  

 

�URHIH@�: 1 − � = 1 − L2 ∗ =N> �V − D� 2;⁄  

 

(THAH<?T 0RIX=SR: 1 − (; 
 

YRTZS?J� XSH< *?HIRATR: 1 − *; 
 

�AXIZRATR: 1 − |D − EDF| 2⁄ ; 
 

.R�SR>>?HA: 1 − .; 
 

where B is the considered behavior of the agent to be 

optimized through the utility function, and O represents an 

order by the leadership. A variable (e.g., Loyalty: L) is 

reflected in Cobb-Douglas through the component (e.g., I - L). 

LM and L2 refer to the agent’s support for leadership/ideology, 

r to the leadership’s resources, P to agent’s ideology, E to 

economic dissatisfaction, V to the agent’s dissatisfaction with 

the security situation, and EDF to the average behavior of 

agents within a certain region of the focal agent. Learning 

theories are implemented by making each of the variables 

functions of an agent (i) and time point (t), multiplying the 

utility function by a learning term �\M�J�
, and allowing both  

\  and P to be “learned” over time in a prescribed manner. For 

the detailed description of how this implementation was 

achieved, please see [8]. 

  

B. Computational Implementations 

 Two analogous AB simulation models were set up. The 

models implemented the social theories and models described 

in Section IIIA for contemporary Afghanistan population. The 

first model, ABM-1, is based on the NetLogo platform [16], 

which is typically used as a demonstration platform for 

ABMs. The system considered five types of agents: Afghan 

government soldiers, coalition forces soldiers, Taliban, 

leaders, and citizen agents. The citizen agents supportive of 

the Taliban were called pro-insurgent, whereas citizens who 

were supportive of soldiers/coalition forces became pro-

government.  The rest were neutral. Therefore, the end result 

was the number of agents with one of three behavioral modes 

(pro-Insurgent, neutral, or pro-government) corresponding to 

the population mindshare. 

The country was divided into six regions, each with 

multiple “patches” in NetLogo. The purpose of the six regions 

was to allow multiple leaders for the Pashtun tribe, and to 

allow each Pashtun leader to have a geographically defined 

area of influence on Pashtun agents. Therefore, the regions 

apply exclusively to the Pashtun tribe. Other tribes had only 

one leader each, and those leaders had influence on their 

agents across the entire country. The data for agents and their 

attributes were developed in creative ways. For example, 

opium production was used as a measure of economic 

prosperity. A variety of heuristics was used for agent 

behaviors like geographical movements. The total number of 

agents was limited to the maximum of 10,000 allowed by the 

NetLogo environment, which required that the behaviors of 

citizen agents be modeled at aggregate levels. The data 

utilized were an aggregate version of the data used for second 

AB model, ABM-2. 

 The ABM-2 simulation was developed using the Oak Ridge 

Mobile Agent Community (ORMAC) platform [11, 12].  The 

ABM-2 model is an identical model to the ABM-1 model but 

with fine-grained data and with agents at much higher 

resolutions. LandScan population data [1] and the relevant 

geospatial methodologies [6] were used to build a synthetic 

Afghan population and to geo-locate the 31 million agents 

corresponding to the 2006 population for Afghanistan. A 

variety of disparate geospatial sources was utilized to develop 

and map the agent attributes as well as the theoretical settings. 

Calibration data were obtained at district levels. The 

combination of a GIS-based platform with an ABM is by itself 

a significant step forward [2]. See [8] for detailed description 

of the data pre-processing methodology for ABM-2. The 

initializations were slightly different, with ABM-2 using 

polling data from Gallop for a deterministic initialization and 

ABM-1 using samples from a probability distribution. The 

social theories embedded in each model were identical, and 
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the test simulations focused on a test of the leadership theories 

described in Section IIIA. 

 

IV. EXPERIMENTAL RESULTS 

The results of the ABM-1 model were compared with the 

results of the ABM-2 model to obtain insights into how the 

fine-grained data and more resolved process models impacted 

the final results. Furthermore, the evaluation measures were 

developed to show the feasibility of using these approaches in 

the HSBC domain.  

 

A. Comparison of Aggregate and Fine-Resolution Models 

Output 

Each of the two models was run nine times (Table 1), with 

each run instantiating one of three possible leadership theories 

(legitimacy, L; representative, R; or coercion, C) and one of 

three time resolutions (3 days, 7 days, or 14 days per “tick,” 

where a tick corresponds to a clock time). 

 
Table 1: The nine simulation runs 

Run Number 1 2 3 4 5 6 7 8 9 

Days / Tick 3 3 3 7 7 7 14 14 14 

Leadership Theory L R C L R C L R C 

 

Because the focus was on leadership theories, five leader 

assassinations were introduced to explore the effects of 

disruptive events (Table 2). The events were based on realistic 

observations in the region. The different simulations provided 

us with a test set of outputs to demonstrate the value of 

statistical distance measures. The nine runs are described in 

Table 1. A comparison of the percent number of agents in 

each social class for each model from three of the nine 

simulation runs are shown in Figure 1. 

 

 
Table 2: Events in the simulations 

 Event 1 Event 2 Event 3 Event 4 Event 5 End 

3days/tick 11 26 27 47 58 68 

7days/tick 5 12 12 21 25 35 

14days/tick 3 6 6 13 16 26 

 

Due to space constraint, only these three outputs are discussed 

in this paper; however, similar observations are seen in the 

other six simulation outputs. The significant bias in the ABM-

2 versus ABM-1 outputs, even at the end points of the 

simulations where the outputs at successive time steps appear 

relatively stable, is obvious from the plots. The only 

exceptions occur during the instantiation of the legitimacy (L) 

theory (run 1) and in that case, only for the number of pro-

Insurgent agents. The fact that simulations differing primarily 

in their spatial resolutions result in such large relative biases is 

cause for concern. Comparisons such as these may help 

improve model outputs, in this case to correct bias errors. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 1. Outputs for the first three simulation runs, as shown in Table 1, are 

shown in (a) to (c) respectively. The outputs generated from ABM-1 (red) and 

ABM-2 (blue) correspond to the number of agents exhibiting pro-Insurgent 

(top of each panel), neutral (middle) and pro-government (bottom) behavior. 

 

The other interesting aspect is that ABM-2 outputs appear 

more responsive to the disruptive events, while ABM-1 
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outputs exhibit more random fluctuations but less response to 

the events. The difference in the response to events versus 

random fluctuations is more obvious in first differences (not 

shown in this paper). The response to the events is much 

clearer in ABM-2, and ABM-1 generates more random 

fluctuations. Although a definitive explanation may not be 

possible without further investigation, the dominance of 

random parameters for initialization in ABM-1 versus the 

more deterministic initializations and simulations in ABM-2 

may be a plausible explanation. In situations where both 

models exhibit what appears to be “legitimate” (i.e., occurring 

at the expected time steps) responses to events, ABM-1 

responses seem somewhat damped compared to ABM-2 

response. This indeed may be caused by resolution effects, 

even though there are a few exceptions to this empirical 

“rule.” The lack of any response in ABM-2 (even the changes 

in ABM-1 appear to be no more than random fluctuations) to 

the disruptive events when the representative (R) theory is 

instantiated may be worth noting. The lack of a leader may 

have less immediate effect on followers when the predominant 

behavior is representative. However such social explanations 

must be exercised with care given that the simulation runs 

appear pretty flat in each case when this theory is 

implemented (runs 2, 5, and 8). This may suggest an artifact of 

the specific experimental design. Although the causal 

explanations offered here are only plausible but not proven 

unless further simulations are performed, the value of simple 

measure (e.g., bias and first differences) together with visual 

representations may be apparent from the discussions here. 

Traditional statistical distance measures such as correlation 

coefficients shown in Table 3 further indicate that the increase 

in the number of days per tick does not significantly improve 

the dependency between systems with respect to the number 

of agents in each class. A detailed comparison of a relatively 

“lumped” or low-resolution model (e.g., ABM-1) with a 

relatively more spatially “distributed” or high-resolution 

model (e.g., ABM-2) typically entails one of two approaches: 

either aggregate the distributed model outputs to the scales of 

the lumped model and compare at the aggregate scales, or 

allocate the lumped model outputs to the scales of the 

distributed model and compare at the higher resolutions. 

 
Table 3: Correlation coefficients between ABM-1 and ABM-2 outputs 

Run Days/tick Theory Pro-Insurgent Neutral Pro-Govt 

1 3 L 0.9750 0.8870 -0.2867 

4 7 L 0.9776 0.9463 -0.4136 

7 14 L 0.9610 0.9109 -0.6806 

 

2 3 R -0.2505 -0.2614 0.1203 

5 7 R -0.3966 -0.4101 0.1839 

8 14 R -0.5601 -0.6048 0.2603 

 

3 3 C 0.8479 0.1196 -0.2215 

6 7 C 0.9361 0.4923 -0.3166 

9 14 C 0.9479 0.5612 -0.4139 

 

In our case, the aggregate “patch” level outputs generated 

from ABM-1 need to be allocated to the finer grids at which 

data are obtained from the Geographical Information System 

(GIS) and which are ultimately used by ABM-2. The 

simulation results must be compared at scales that matter to 

decision-makers (e.g., district levels in Afghanistan). The map 

for the case study region (Ghazni) with one ABM-1 patch, 

corresponding ABM-2 grids, and the Afghan districts 

(indicated by identification numbers assigned for the purpose 

of this simulation) is shown in Figure 2. Specifically, the 

number of agents for each class and each patch was converted 

into the corresponding number of agents for each district by 

multiplying the uniformly distributed number of agents by the 

number of patches that equal the geographical size of each 

district. In a sense, this is just an area-weighted allocation 

strategy. We focused the comparison on “Run 1” (see Table 4) 

and a few districts for illustrative purposes. 
 

Table 4: Linear correlation between ABM-1 and ABM-2 runs at district levels 

RUN District ID Pro-Insurgent Neutral Pro-Govt 

1 27713 0.9744 0.8855 0.0000 

27723 0.9759 0.8890 0.0000 

27726 0.9759 0.8897 0.0000 

27731 0.9744 0.8856 -0.2867 

27747 0.9740 0.8846 0.0000 

 

Table 4 shows high correlations between ABM-1 and ABM-2 

outputs for pro-insurgent and neutral agents. The zero or 

negative correlations for pro-government agents may be 

ignored given that the number of these agents remains 

relatively constant during the simulation time period (see 

Figure 1a). 

 

 
Fig. 2. A map of the Ghazni region in Afghanistan that was used for the case 

study. The aggregate level ABM-1 patch and the finer resolution ABM-2 grids 

are indicated. The district boundaries are marked, and each district is assigned 

an identification number for the purposes of the simulations.  

 

B. Comparison of Entropy Outputs 

In this section, we compare the entropy of the number of 

agents in each for each social simulation model. Again, only 

plots of the entropy of the first three simulations are shown in 

Figure 3 due to limitation on the number of pages; however, 

similar conclusions can be drawn from the other six outputs 

not shown.  

One insight from these plots and others not shown in this 

paper is that in almost all the cases the entropies of the outputs 

from both models are different over time; except pro-insurgent 

class for runs 1, 4, and 7.The implication of this observation is 
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that the interpretation of entropy may lead to conflicting 

conclusions; the determination of which of these models is 

accurate is a subject for future research. However, the fact that 

two analogous models could give different entropies is a 

prerequisite for additional investigations.  

 Another insight is that simulations based on L and C 

theories (Figures 3a and 3c) are reactive to temporal changes; 

whereas, simulations based on R theory (Figure 3b) are non-

reactive to temporal changes. Furthermore, in some cases, 

both models give similar outcomes with small variations (see 

Figures 3a and 3c - top plots); whereas in other cases, both 

models give opposite outcomes (see Figures 3a and 3c - 

middle and bottom plots). The obvious implication of this 

insight is that one of the models is not a complete 

representation of the expected social behavior. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 3. Outputs of entropy computation for three of the nine simulation runs 

are shown in (a) to (c) respectively. The outputs generated from ABM-1 (red) 

and ABM-2 (blue) correspond to the entropy of the number of agents 

exhibiting pro-Insurgent (top of each panel), neutral (middle) and pro-

government (bottom) behavior. 

 

C. Comparison of Mutual Information Outputs 

Mutual information is useful for quantifying emergence in 

complex social systems. Therefore, the first step is to 

determine how much the knowledge about the number of 

agents in a particular class could tell about one of the other 

two classes. To do this successfully, we also compare the 

mutual information of one class given another class for the 

two models.  The results are shown in Figure 4 for runs 1 to 3. 

Again from these plots, we notice differences in the MI values 

over time as we have seen with the entropy computations. 

 One insight from these results is that the MI (correlation) 

between classes in all cases ranges from -0.8 and 0.5, which 

indicates that there is no strong correlation between the 

classes; hence, they are not overly dependent on each other. 

The implication then is that the classes are overly independent 

in most cases. 

 

 
(a) 
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(b) 

 

 
(c) 

Fig. 4. Outputs of mutual information computation for three of the nine 

simulation runs are shown in (a) to (c) respectively. Each plot corresponds to 

the mutual information of the number of agents in a class GIVEN the number 

of agents in another class with red plots for ABM-1 and blue plots for ABM-

2. 

 

 Another insight, considering only ABM-2 outputs, is that 

for runs 1 and 3, the MI(pro-insurgent GIVEN pro-

groverment) decreases over time; whereas, the MI(neutral 

GIVEN pro-government) increases over time.  The increase 

and decrease in MI over time is an evidence of phase 

transition; however, we cannot determine if the system is 

transitioning from a stable system to an unstable system or 

vice versa. The implication of phase-transition dynamics is 

that it supports the possibility of emergent behavior; which 

suggests that MI may be used for quantifying emergent 

behavior. 

 

V. CONCLUSIONS 

 This paper focuses on systematic evaluation of human, 

social, cultural, and behavioral (HSBC) modeling and 

simulation (M&S) systems. Even though the results presented 

in this paper are preliminary, we believe that an important and 

promising step, albeit small, has been taken toward achieving 

the ultimate goal. 

The purpose of this paper was to demonstrate, in a 

preliminary and proof-of-concept fashion, the feasibility of 

developing distance measures to compare multiple simulation 

results, as well as to compare simulations with observations 

(even when such observations are noisy, sparse, partial, or 

incomplete), with the goal of evaluating performance of 

HSBC systems in terms of modeling predominant behavior 

and processes, extreme and surprising behavior, and rare 

tipping points. 

The area of HSBC M&S suffers from models that are 

poorly understood (relative to models for most physical, built, 

or natural systems) and data that are inherently noisy, sparse, 

and incomplete. Thus, validation takes on the form of 

characterization and systematic evaluation, with the ultimate 

aim of providing value to end users and stakeholders such as 

military commanders. The results presented in this paper are a 

part of the first step in this challenging direction. 
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