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ABSTRACT

Accelerating hardware devices represent a novel promisarfo
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(GPGPUSs) [11, 6, 16].
It may seem that the incorporation of more cores at the expens

proving the performance for many problem domains but it is no of flexibility impedes the adoption of GPUs in areas outside t

clear for which domains what accelerators are suitable |&\hére
is no room in general-purpose processor design to significam
crease the processor frequency, developers are instemtinggo
multi-core chips duplicating conventional computing dzipies on
a single die. Yet, accelerators offer more radical desigith &
much higher level of parallelism and novel programming e
ments.

This present work assesses the viability of text mining orb@U

graphics domain. However, NVIDIA's launch of the Computei-Un
fied Device Architecture (CUDA) with its simple but effecipro-
gramming model has resulted in the adoption of GPUs by a di-
versity of domains [15]. The emergence of the NVIDIA CUDA
programming model has become a breakthrough toward a more
programmer-friendly environment, much in contrast to jmes ap-
proaches of GPGPU environments. Since then, CUDA has been
proved to be well-suited for many applications with only recate

Text mining is one of the key concepts that has become prathine amounts of algorithm re-design and coding efforts. Prognans no

as an effective means to index the Internet, but its apjpdicatange
beyond this scope and extend to providing document sirtyilarét-
rics, the subject of this work. We have developed and opgaohtext
search algorithms for GPUs to exploit their potential forssiae

data processing. We discuss the algorithmic challengesafip
lelization for text search problems on GPUs and demonsthate

potential of these devices in experiments by reportingiaamt

longer have to master graphics-specific knowledge, suctaaghve
case with openGL, before being able to efficiently progran&P

While it has been demonstrated that CUDA can significantly
speedup many computationally intensive applications flomains
such as scientific computation, physics and molecular dicgam
simulation, imaging and the finance sector [7, 13, 14, 5, 3, 10
it remains less unnoticed in other domains, especiallyetheaish

speedups. Our study may be one of the first to assess moregompl more integer computations, with few exceptions([8, 9]. Thisartly

text search problems for suitability for GPU devices, amday also
be one of the first to exploit and report on atomic instructisage
that have recently become available in NVIDIA devices.
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1. Introduction
Graphics programming units (GPUSs) differ from generalgose
microprocessors in their design for the single instructiwutiple

data (SIMD) paradigm. Due to the inherent parallelism oteser

shading, GPUs adopted multi-core architectures long bategu-
lar microprocessors resorted to such a design. While thisioa

was driven by the applications in the former case, it wasatict by
power and asymptotic single-core frequency limits for titeel. As
a result, today’s state-of-the-art GPUs consist of manylisioapu-

tation cores compared to few large cores in off-the-sheR&E§ at
the cost of devoting less die area for flow control and dathiogc

in each core. And since GPUs support a higher number of pea

floating-point operations per second, researchers aredsirgly
utilize by the so-called general-purpose graphics progreng units
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due to the perception of fast (vector) floating-point catioin being
one of the major contributors to performance improvemerawH
ever, careful parallel algorithm design may be able to corsate
such shortcoming, which is the premise of our work for texrek
application deployment of GPUs.

We chose to implement one of the fundamental concepts used in
information retrieval and text mining, namely the term freqcy /
inverse document frequency (TFIDF) rank search [2]. Thipal
rithm can be easily extended to quantitatively measureithiesi-
ties between any two documents, which is our focus. It thagpa
significant role (in many variations) in text searchingssiéication,
and clustering. The present work explores the opportunitfesolv-
ing basic text mining problems through an efficient impletagon
of TFIDF on GPUs via CUDA.

2. TFIDF Problem Description

Term frequency is a measure of how important a term is to a
Kk document. Théth term'st f in document; is defined as:

i, j
Dk Mk,

wheren; ; is the number of occurrences of the term in document
d; and the denominator is the number of occurrences of all tetms
document;;.

The inverse document frequency measures the general impor-
tance of the term in a corpus of documents. It is done by digidi
the number of all documents by the number of documents agentai

tfij = 1



ing the term, and then taking the logarithm.
D]

|{d] 1t € dj}|

where| D] is the total number of documents in the corpus Had :

t; € d;}| is the number of documents containing term
Then

idf; = log 2

tfidfi; = tfi; * idf; 3)

The idea of TFIDF can be extended to compare the similarities

of two documentsl; andd;. This is done simply by expressing all
common terms’ tfidf values in two documents as dot products:

simij = Y (tfidfy; *tfidfy ;) (4)
k

The larger the value is, the more similar these two documangs
considered.

There are many ways to calculate the TFIDF given a corpus of

documents. The most straightforward method, also used big us
illustrated in Figure 1. The first step, which is part of thecdlo
ment pre-processing prior to the core TFIDF calculatiorceegts
and tokenizes each word of a document. It is also in this $tap t

the stop words are removed. Stop words, also known as the nois

words, are common words that do not contribute to the uniegsgen

of the document [1]. In the second step, some cognate woglds ar

transformed into one form by applying certain stemming grat
for each. This is necessary to obtain results with highecigi@n
[12]. In step three, the document hash table is built for esrtu-
ment. The<key, value> pairs in the token hash table are the unique
words that appear in the document and their occurrencedreies,
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Figure 1: TFIDF Workflow

respectively. In step four, all of these token hash tablesedtuced
into one global occurrence table in which the keys remairsémee,
but values represent the number of documents that contaiagh
sociated key. The TFIDF for each term can be easily caladilaye
looking up the corresponding values in the hash tables dowpto

Equation 3 as seen in step five.

3. Implementation

One of the key challenges in algorithmic design for GPGPUs is
to keep all processing elements busy. NVIDIAs philosoptyei-
sure high utilization is to oversubscribe, i.e., more gatalork is
dispatched than there are physical stream processoralaeailJs-
ing latency-hiding techniques, a processor stalled on aongnef-
erence can thus simply switch context to another dispatolozl
unit.

In order to fully utilize the large number of streaming prece
sors in NVIDIA's GPUs, we process files in batches with theebat
size chosen as 64. Several kernels are developed to impieheen
steps described in Section 2. The inputs of the tokenizeckeare
raw data streams. One block is assigned to process each dotum
stream. In the kernel, every special character is substitint-place
by a uniform special character and subsequently ignoreds cem
be done very efficiently with coalesced global memory accékes
tokenized stream is then fed into the RemoveAffix_kernelttip s
affixes. In this kernel, document streams are divided evanly
processed by multiple CUDA threads.

The kernel requires extensive data movement between hdst an
GPU memories by DMA. First, to handle a large amount of docu-
ments/files, especially when total document size is largan the
GPU global memory, the document hash tables needs to bedlushe
out to host memory once they are completely constructedoriéiec
the raw data of a document is pushed from host memory to GPU
global memory at the beginning of each batch process. Taceedu
the overhead of memory movement, we developed the CPU/GPU
collaboration framework shown in Figure 2. In each batctatien,
the CPU thread first launches the two pre-processing keasgiz-
chronously. Before it calls the next kernels that write te thoc-
ument hash table buffer in the GPU’s global memory, it waits f
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Figure 2: CPU/GPU Collaboration Framework



the completion signal of the previous batch’s DMA that tfars

the old batch table to host memory. When the GPU is busy gener-

ating the document hash tables and inserting tokens intgltil
occurrence table, the CPU can prefetch the next batch offfdes
disk and copy them to an alternate file stream buffer. At trebadn
the batch iteration, the CPU again asynchronously issuesnaamy
copy of the document hash table to the host's memory. Onligén t
next batch’s iteration will the completion of this DMA be symo-
nized. In this manner, part of the DMA time is overlapped with
GPU calculation by (a) double buffering the document rava diat
GPU and (b) overlapping the hash table memory copy in thentirr
batch with the stream preprocessing (tokenize and stenels}rof
the next batch [4].

To further reduce the DMA overhead, one may reduce the size of
the document hash table. This table differs from the globalo
rence table, which resides in GPU global memory but need @ot b
copied to host until the end of execution. Therefore, tha datic-
tures of these tables differ slightly as shown in Figure 3e dbc-
ument hash table contains a header and an array of entrigsh wh
are internally linked as a list if they belong to the same letickhe
header is used to determine the bucket size and to find theffitrst
in each bucket. In contrast, the global hash table consisishiy
array of entries evenly divided into buckets. Because timetar of
unique terms is considered limited no matter how large thipu
size is, the number of buckets and the bucket size can be rthose
sufficiently large to avoid possible bucket overflows.

Another effort to reduce the size of the document hash table
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Figure 3: Hash Table Data Structures

avoids storing the actual term/word in the table. Insteadryeen-
try simply maintains an index pointing to the correspondamgry
in the global occurrence table where the actual term is saVed
reduce the number of hash key computations at hash insemidn
during hash searches, the key is saved as an “unsigned lobgth
hash tables. To further reduce the probability of hash siotis
(two terms sharing the same key), another field called itergi
added as an “unsigned int” to help differentiate terms. Teni
tity is then constructed ggerm length << 16)|( first char <<
8)|(last char).

Upon investigation, we determined that atomic operatiangs s
ported by certain GPUs via CUDA are facilitating the constru
tion of a concise document hash table without adverselyctifig
the parallelism of the algorithm. We alternatively proviieother
method to generate the same hash table for GPUs without guppo
for atomic operations. Even though the latter method is sidghan
the first, it is required for GPU devices that do not have atoop-
eration supporti(e., devices with CUDA compute capability 1.0 or
earlier).

3.1 Hash Table Updates using Atomic Opera-

tions

Access to hash table entrigis atomic operations is realized in
two steps as depicted in Figure 4. In the first step, the dootme
stream is evenly distributed to a set of CUDA threads. Theb@m
of threads,L, is chosen explicitly to maximize GPU's utilization.
A buffer storing the intermediate hash table, which is cluséhe
structural layout of the global occurrence table, but witnzaller
number of bucketds, is used to sort terms by their bucket IDs. Ev-
ery time a thread encounters a new term in the stream andelitsi
bucket ID, itissues an atomic increment (atomic-add-opeyation
to affect the bucket size. (Notice that the objective of Higorith-
mic TFIDF variant is not to identify identical terms. Instkats
chief objective is to compute a similarity metric.) If we asge that
terms are distributed randomly, then contention duringateenic
increment operation is the exceptiore., threads of the same warp
are likely atomically incrementing disjoint bucket sizeres.

In the next step, the intermediate hash table is reducee tiintl,
more concise document hash table shown in Figure 3. Each CUDA
thread traverses one bucket in the intermediate hash t@dilects
duplicate terms, and, if finds a new term, reserves a pladeiet-
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Figure 4: Building a Hash Table with Atomic Operations



try array by atomically incrementing the total size. It thmrshes
the new entry into the header of the linked bucket list. Sififfer-

ent threads operate on disjoint buckets, each linked lisbpeket
is accessed in mutual exclusion, which guarantees absémaé®
conflicts between threads.

3.2 Hash Table Updates without Atomic Op-

erations

In GPUs without atomic instruction support, the documenazst
is first split intoM packets, each of which is pushed into a different
hash sub-table owned by one thread in a block, as shown irlstep
of Figure 5. By giving each thread a separate hash sub-talgle,
guarantee write protection (mutually exclusive writeshaf values)
between threads. In step R] threads are re-assigned to different
buckets of the sub-table, identical terms are found in ttiep,sand
statistics for each bucket are generated. Because terrssbiean
grouped by their keys in step 1, there will be no write corglioe-
tween threads at this step either. The bucket size infoomas
processed in step 3 to finally merge sub-tables to compodantie
document hash table.
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Figure 5: Building a Hash Table without Atomic Operation

3.3 Discussion

The two procedures detailed above to handle hash tokens in
document do not require information from any other document
Thus, each document can be processed simultaneously aed ind
pendently in different GPU blocks. With a sufficiently langem-
ber of documents, we can fully utilize the GPU cores and ekplo
NVIDIA's latency hiding on memory references through owdrs
scription. However, in the first step of the second methoel nitm-
ber of packets\/ per document is delimited due to memory con-
straint and the efficiency of the following steps. We chooselae
of M = 16 in our implementation. To compensate for this con-
straint, we can spawn more threafldn the first methodgeg., by
choosingL = 512. This constraint on parallelism results in a non-
atomic approach that is slower than its atomic variant.

From the memory usage’s perspective, the non-atomic agiproa

consumes more global memory simply because the interneediat
hash tables in the non-atomic approach are larger thanrttaei
atomic approach. Both of the above methods cannot handje ver
large single documents that exceed the size of the globalamem
Since our problem domain is that of Internet news articldsiclv
typically do not exceed more than 10K words, documents fits in
memory for our implementation. This framework is even siléa
for arbitrarily large corpus sizes as we could reused witkbhanges
both intermediate hash tables and the document hash tadlefter

of which is flushed to host memory for each batch of files.

4. Experimental Results

During experimentation, our CUDA variant was compared
against a functionally equivalent CPU baseline versiong(s-
threaded in C/C++) of the TFIDF benchmark implementatione T
test platform was a Linux Fedora 8 Core with a dual-core AMD
Athlon 2 GHz CPU with 2 GB of memory. The installation inclatde
the CUDA Compilation tools (Version 1.1) of the CUDA 2.0 beta
release and NVIDIA's Geforce GTX 280 as a GPU device. The test
input data was selected by the original TFIDF designers abses
of Internet news documents with variable sizes ranging faoound
50 to 1000 English words (after stop-word removal).

We first compare the execution time for one batch of 96 fileg Th
individual module speedup and their percentages in totaslaown
in Figure 6 and Figure 7.

Notice that the speedup on the y-axis of Figure 7 is depicted o
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Figure 6: Per-Module Performance: CPU baseline vs. CUDA



logarithmic scale. Compared to the CPU baseline implentienta
we achieve more significant speedups for those modules eddiag
the pre-processing phase (factor of 30 times faster in inkeamnd
20 times faster in strip affixes kernels) than for those atteh ta-
ble construction phase (around 3 times faster in both dootihesh
table and occurrence table insertion kernels). The limitpeedup
during the latter are due to the multi-step hash table coctsbn
algorithms described in Section 3. The algorithm has cedaer-
heads that the CPU benchmark does not contain. These odsrhea
include (a) the construction of intermediate or hash sbket (b)
branching penalties suffered from the SIMD nature of GPlesor
due to the imbalance in the distribution of tokens for a hasifets
buckets; and (c) non-coalesced global memory access mmtsra
result of the randomness of the hash key generation. Funtiret
the kernel for occurrence table insertion does not fullyl@xll
GPU cores because insertion is inherently serialized oles fo
avoid write conflicts within the same hash table bucket.

I Dma Overhead
] iidf

[ Occ Table
I Doc Hash
I Strip Affixes
[ Tokenize
I Disk /0

% of total

Figure 7: Per-Module Contribution to Overall Execution Time

We also observe a reduction in the calculation time to therext
that the DMA overhead has become the largest contributordrad
time in asingle batch scenario accounting for almost half of the total
execution time. The combined time with disk 1/0 exceeds theal t
kernel execution time on GPU.

The observation above gives us the motivation to mitigage th
memory overhead by double buffering the stream and hashgabl
when the corpus size gets larger. While we cannot hide the DMA
overhead of a first batch, the DMA time of subsequent batches c
be completely overlapped with the computational kernetsmoilti-
batch scenario. Figure 8 shows the execution time of CPU and
CUDA with different corpus sizes.

The execution time of both of the two aforementioned methods
are measured. With almost perfect parallelization betv&eb cal-
culation and data migration, we can hide almost all the Kesre-
cution time in the DMA transfer and disk 1/O time, which indtes
a lower bound of the execution time. As a result the the asgftiapt
average batch processing time is almost half comparingetaitin
gle batch execution time, in which case the calculation aMAD
cannot be overlapped. We also observe that the overallezatiein
rates are 9.15 and 7.20 times faster than the CPU baseline.

5. Conclusion
In this paper, we presented a hardware accelerated imptanta
of TFIDF rank search algorithm exploiting GPU devices tiyiou
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Figure 8: Execution Time with Different Corpus Size

NVIDIA's CUDA. We developed two highly parallelized methed
to build hash tables, one with and one without atomic opemati
support. Even though floating-point calculations are nohidat-
ing this text mining algorithm and its text processing cltea
istics limits the effectiveness due to non-synchronizeanbhing
and diverging, data-dependent loop bounds, we achievegné-si
icant speedup over the baseline algorithm on a generabparp
CPU. More specifically, we achieve up to a 30-fold speedup ove
CPU-based algorithms for selected phases of the problemiol
on GPUs with overall wall-clock speedups ranging from sildf
to eight-fold depending on algorithmic parameters. Thipesi
ment demonstrates the potential of GPUs to accelerate ptegyer-
oriented, branch-dominated massive data text mining éfgos by
carefully redesigning data structures to provide massavalfelism,
which makes these problems suitable for latency hiding ipjoéix
ing task over subscription in GPUs.
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