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ABSTRACT 
 

Neutron experiments at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory 
(ORNL) frequently generate large amounts of data (on the order of 106-1012 data points). Hence, 
traditional data analysis tools run on a single CPU take too long to be practical and scientists are unable to 
efficiently analyze all data generated by experiments. Our goal is to develop a scalable algorithm to 
efficiently compute high-dimensional integrals of arbitrary functions. This algorithm can then be used to 
integrate the four-dimensional integrals that arise as part of  modeling intensity from the experiments at 
the SNS. Here, three different one-dimensional numerical integration solvers from the GNU Scientific 
Library were modified and implemented to solve four-dimensional integrals. The results of these solvers 
on a final integrand provided by scientists at the SNS can be compared to the results of other methods, 
such as quasi-Monte Carlo methods, computing the same integral. A parallelized version of the most 
efficient method can allow scientists the opportunity to more effectively analyze all experimental data.  

 
 

 
1. INTRODUCTION AND MOTIVATION 

 
High-dimensional integrals arise in many areas of science, particularly physics and experimental 

mathematics. Specifically, experiments performed at the Spallation Neutron Source produce huge 
quantities of data. Traditional approaches to analyzing the data involve a more or less brute force 
application of numerical integration schemes such as the Monte Carlo methods. However, when applied 
to 1012 data points, this approach becomes intractably time consuming. Hence, it is necessary to develop 
an algorithm that modifies, parallelizes and implements a more traditional numerical integration scheme 
efficiently and scalably. By developing an efficient, scalable algorithm, the data from SNS experiments 
can be successfully analyzed in full. The goal of scalability is an important one so that the analysis may 
be performed on both large computing clusters and individual computers with multi-core processors 
(given that a desktop with 4-8 processing cores is now common). A search of the literature shows that 
there is no such highly parallel adaptive quadrature solver for high-dimensional integrals currently 
available. 
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2. LITERATURE REVIEW 
 

As computers have become more powerful, research into numerical techniques has attempted to 
make use of each improvement. Thus, there exists a huge amount of literature on the topic of 
numerical integration in general and specifically on algorithms to compute high-dimensional 
integrals. The difficulty is finding literature that deals with arbitrary (rather than smooth) integrands. 
The most common methods are Monte Carlo, quasi-Monte Carlo and quadrature methods. Figure 1 
shows the numerical integration algorithms considered. 

 
Figure 1. Numerical integration algorithms 

 
2.1 MONTE CARLO METHOD 

The textbook by Lemieux provides an introduction to Monte Carlo methods. Simple Monte Carlo 
integration approximates an integral as the average of the value of the integrand function evaluated at 
N pseudorandom points in the domain of integration, i.e. 

  
for N pseudorandom points xi in the volume of the domain of integration V [8]. Unfortunately, this 
method has some very serious weakness lying in the nature of pseudorandom numbers. 
Pseudorandom numbers can cluster in the space of integration, causing one region of the space to 
weight the sample more heavily than others [8]. This leads to lower accuracy.  

Two popular methods used to deal with this weakness are recursive stratified sampling and 
importance sampling. Recursive stratified sampling (similar to the popular algorithm MISER) 
estimates the error following a Monte Carlo integration. If the error is too large, the region is 
subdivided and each subregion is integrated, repeating until the error estimate meets a desired 
tolerance. To keep the number of subdivisions at a minimum, the region is subdivided only in the 
dimension that will be most beneficial [5]. Unfortunately, this choice of dimension depends on the 
integrand function and so recursive stratified sampling does not lend itself to evaluating an arbitrary 
integral. Importance sampling (similar to the popular algorithm VEGAS) takes its points xi for 
evaluation from the probability distribution described by |f|. This allows for the xi’s to come from the 
regions of integration contributing most to the value of the integral [5]. Again, this does not lend itself 
to implementation in a general solver for the evaluation of an arbitrary integral. 
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2.2  QUASI-MONTE CARLO METHOD 
The quasi-Monte Carlo method uses the same approximation as the Monte Carlo method except 

that it evaluates f at points xi of a low-discrepancy sequence (rather than pseudorandom numbers). 
The idea of a low-discrepancy sequence is that the space of integration is covered by points for 
evaluation in more ordered and better-covering way [5]. One of the more popular low-discrepancy 
sequences used for quasi-Monte Carlo integration is the Sobol sequence, in which each xi is 
determined by using a primitive polynomial and performing bit-by-bit exclusive-or operations on 
combinations of the coefficients of the primitive polynomial and previous terms. It is detailed in [1]. 
 
2.3 ONE-DIMENSIONAL GAUSSIAN QUADRATURE METHOD 

Generally, Gaussian quadrature approximates an integral by  

 
for weights wi and abscissas xi coming from a chosen orthogonal polynomial [5]. Non-adaptive 
quadrature methods will simply stop following this evaluation. Adaptive quadrature methods perform 
an error estimate on the evaluation and, if the error exceeds a given tolerance, the region of 
integration is subdivided and the quadrature rule is applied separately to each subregion. That is, the 
region of integration is initially covered with N points to approximate the integral by an N-point 
quadrature rule. Following subdivision, 2N points are used to approximate the integral by applying an 
N-point quadrature rule to two subregions. This is repeated for any subregion with large error until 
the error tolerance is reached [5]. By focusing on regions with the largest error, adaptive methods are 
more capable of handling difficult (quickly changing for example) integrands than non-adaptive 
methods because it is possible to break difficult areas down into areas small enough to eliminate the 
difficulties locally. Unfortunately, this can be quite time-consuming. However, in one-dimension, it is 
still quite efficient [5].  

Gauss-Kronrod rules are an extension of a given N-point Gauss rule. The Kronrod extension adds 
N+1 points to the N-point rule, yielding a higher-order rule without having to recalculate entirely new 
points (the original N points get reused) [7]. The difference between an evaluation using the Gauss 
rule and an evaluation using the corresponding Gauss-Kronrod rule provides a convenient error 
estimate for use in adaptive schemes. 

 
2.4 MULTI-DIMENSIONAL GAUSSIAN QUADRATURE METHODS 

There are two approaches to using multi-dimensional Gaussian quadrature. The first is to 
recursively call one-dimensional quadrature rules [5].That is, integrate with respect to x1. Then 
integrate the result with respect to x2. This result is then integrated with respect to x3, and so on. This 
advantage to this is that it mimics integration by hand and so is very intuitive. And it does work fairly 
well for smooth integrands in low dimensions [5]. However, it can become very inefficient for 
complicated integrands or in higher dimensions. The second option is to develop a multi-dimensional 
quadrature rule, such as by using Smolnyak’s construct and taking the tensor product of one-
dimensional rules. For integrands that are functions with bounded mixed derivatives, this proves to be 
very efficient when Gauss-Patterson quadrature rules (an extension that goes beyond the Kronrod 
extension) are used (even in comparison to quasi-Monte Carlo methods)[7]. The main disadvantage is 
that this is a much more complicated method to develop rigorously and implement.  

 
2.5 PARALLEL NUMERICAL INTEGRATION 

In general, there is significantly more work involved in efficiently parallelizing an adaptive 
quadrature method than in parallelizing a Monte Carlo method. This is due to the more challenging 
requirements for proper load distribution. It has been concluded [2] that the most efficient method is 
using a message passing programming model with each processor maintaining an independent list of 
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subregions and where the load is balanced by comparing error with a fixed neighbor after a fixed 
number of integrations and transferring the subregions with the largest error to the neighbor. The 
number of integrations can be reduced to further improve efficiency. The issue with the reduced 
method is that it is dependent on a parameter that may take some time to tune. It has further been 
shown [9] that adaptive quadrature methods parallelized in this way can perform better than a 
parallelized quasi-Monte Carlo method for certain types of integrands (mostly smooth) and in very 
low dimensions (<5) both in terms of accuracy versus processing time and accuracy per integrand 
evaluation. Unfortunately, scalability has only been explored up to 16 [9] and 30 [2] processors and 
there does not appear to exist a highly-parallel adaptive quadrature method.  

 
 

3. STATE OF THE ART 
 

3.1 EXISTING SOFTWARE PACKAGES 
There are a variety of algorithms and source code available for numerical integration. The two 

freely available, open source software packages examined were the GNU Scientific Library (GSL) [6] 
and the QUADRULE package [3]. 

The GSL offers a variety of solvers for one-dimensional numerical integration. Specifically, it 
includes solvers capable of solving functions with singularities, functions with known singular points, 
functions on an infinite interval, singular functions, oscillatory functions and Fourier integrals. The 
majority of the implementations are adaptive. 

The QUADRULE package contains a huge amount of  source code for generating different 
quadrature rules and implementing the generated rules in a non-adaptive solver. In general, it is an 
excellent resource as a basis to start writing code for a solver, but it would not be possible to 
implement a truly accurate, efficient multidimensional solver with only the available source code. See 
Appendix C for more details regarding the necessary steps to use QUADRULE as a basis for a 
multidimensional solver. Some of the programs examined in detail were (with Burkardt’s description 
of what each does): 

• quad_mpi – a parallelized example of a one-dimensional numerical integration 
• quadrature_test – “a program which reads the definition of a multidimensional quadrature 

rule from three files, applies the rule to a number of test integrals, and prints the results.” 
• quadrule –“a library which defines quadrature rules for approximating integrals;” i.e., have to 

use both quadrule and quadrature_test to evaluate an integral, also have to pick a rule 
• product_rule – “a C++ program which creates a multidimensional quadrature rule by using a 

product of one-dimensional quadrature rules.” 
• quadrature_rules – “a dataset directory which contains examples of quadrature rules.” 
• sparse_grid_gp – “a dataset directory which contains examples of sparse grids, using the idea 

of a level to control the number of points, and assigning point locations using the Gauss 
Patterson rule.” 

It is clear that each of these programs provides very useful elements. However, directly combining 
several of them will not result in a comprehensive, efficient multidimensional solver. 

3.2 ALGORITHM SELECTION 
In general, Monte Carlo methods perform faster than Gaussian quadrature. However, this 

speed comes at the cost of lower precision. Therefore, it is necessary to compare the performance of 
both Monte Carlo and quadrature methods on several test integrals in order to determine which 
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performs with the desired combination of precision and speed. This research focuses on recursively 
calling one-dimensional adaptive quadrature solvers four times to solve a four-dimensional integral. 
This method was chosen as a first approach due to the ready availability of open-source code that 
could be easily adapted. Future approaches may involve developing a four-dimensional quadrature 
rule and an adaptive solver using it. 

Functions from [5] serve as the basis of the framework for recursive integration, calling each 
of three different solvers from the GNU Scientific Library (GSL) [6]. The solvers chosen from the 
GSL as the final choices for implementation are QNG, QAG, and QAGS. 

QNG is a non-adaptive method that successively applies the 10-point, 21-point, 43-point and 
87-point Gauss-Kronrod integration rules until the estimate of integral is within desired error limits. 
This makes the QNG method closer to an adaptive method than a truly non-adaptive method. 
Adaptive methods intelligently subdivide only the regions where the error exceeds a given tolerance; 
QNG subdivides the entire region when the error exceeds a given tolerance.  

QAG adaptively applies a 15, 21, 31, 41, 51, or 61 point Gauss-Kronrod rule according to the 
user’s choice until the estimate of the integral is within desired error limits. This can require a user to 
do extra testing to determine the most efficient choice for solving an integral. 

QAGS adaptively applies a 21 point Gauss-Kronrod rule until the estimate of the integral is 
within desired error limits. While it is capable of handling some functions with singularities (unlike 
QNG or QAG), it cannot solve a function when the singularity occurs at an abscissa. 
 
 

4. IMPLEMENTATION 
 

4.1 GOAL 
The goal is to solve a final integral from experiments at the Spallation Neutron Source 

calculating the intensity at a given point :  
                     (1) 

for machine resolution function  and neutron scattering function . This is the integral 
that must be computed at the 1012 data points.  
The resolution function, for R0 constant and M a symmetric matrix, is given by: 

                                       (2) 
The scattering function is given by:  

                                                (3) 
for 

                                                               (4)  

                                                          (5)  
where maxincoh is a constant parameter and sincoh is the standard deviation. 

                                             (6) 
where maxint is a constant parameter, sigmaE is the standard deviation, w is the dispersion given by: 

                                                   (7) 
fdperp is a dimer form factor given by: 

                                       (8) 
 and ff is a magnetic form factor given by: 
 

    (9) 
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for eight element arrays j0 and j2 and s2 given by: 

                                                        (10) 
for constants a, b and c 

 
While the space of data is infinite, the limits of integration must be rescaled in each 

dimension to make the problem finite and more easily solvable. After rescaling, the new limits of 
integration become  (–π/2, π/2) for each dimension. This rescaling is performed by sending each 
variable to the tangent of that variable, i.e. . 
 
4.2 IMPLEMENTATION DETAILS 

The function quad3d.h from [5] was used as a basis to develop a program that recursively 
calls GSL one-dimensional integration solvers four times to solve a four dimensional integral. The 
main programming challenge was the strict function definition requirements of the GSL solvers.  
This necessitated the global definition of limits of integration and error tolerances (parameters that 
GSL integrators call) since the function definitions of each round of integration cannot be changed to 
accommodate passing the limits of integration as parameters. The general algorithm for numerical 
integration is depicted in Figure 2. 

 

 

Figure 2. Flowchart depicting numerical integration 
 

Two methods of implementing the integrand function f were explored. Both use the same 
algorithm for numerical integration. The difference is that Implementation 1 defines the integrand 
explicitly within the function f and Implementation 2 defines the integrand as external functions 
called by f. When evaluating the same integral, both implementations should return the same result at 
about the same speed. However, our experiments contradict this assumption. The first implementation 
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uses the following pseudo code: 
Implementation 1 – Integrand Explicitly Defined in f 

Step 1: Define the function to be integrated (for fixed ) 
f( )= , the limits of integration and error 
tolerances. 

Step 2: Pass f(Qx′, Qy′, Qz′, E′) to a framework function that holds Qx′, Qy′ and Qz′ fixed, 
i.e. that sets f(Qx′, Qy′, Qz′, E′) = f(E′). 

Step 3: Pass f(E′) to a function calling the GSL integration method chosen to integrate f(e) 
with respect to E′. 

Step 4: Set g(Qz′)=result of Step 3. 
Step 5: Pass g(Qz′) to a function calling the GSL integration method chosen to integrate 

g(Qz′) with respect to Qz′. 
Step 6: Set h(Qy′)=result of Step 5. 
Step 7: Pass h(Qy′) to a function calling the GSL integration method chosen to integrate 

h(Qy′) with respect to Qy′. 
Step 8: Set q(Qx′)=result of Step 7. 
Step 9: Pass q(Qx′) to a function calling the GSL integration method chosen to integrate 

q(Qx′) with respect to Qx′. 
Step 10: Return the result of Step 9. 

The second implementation for the integrand function f used in equation (1) at a fixed data point  
 is to have the integrand function f call the separately defined resolution 

and scattering functions. By comparison, Implementation 1 would have the resolution and scattering 
functions explicitly defined in the integrand function f. The pseudo code is very similar to 
Implementation 1, with only the implementation of the integrand function f changing: 

Implementation 2 – Integrand Defined Separately and Called by f 
Step 1: Define the resolution function R. 
Step 2: Define the scattering function S. 
Step 3: Define the function to be integrated (for fixed ) 

f( )= , the limits of integration and error 
tolerances. 

Step 4: Pass f(Qx′, Qy′, Qz′, E′) to a framework function that holds Qx′, Qy′ and Qz′ fixed, 
i.e. that sets f(Qx′, Qy′, Qz′, E′) = f(E′). 

Step 5: Pass f(E′) to a function calling the GSL integration method chosen to integrate f(e) 
with respect to E′. 

Step 6: Set g(Qz′)=result of Step 5. 
Step 7: Pass g(Qz′) to a function calling the GSL integration method chosen to integrate 

g(Qz′) with respect to Qz′. 
Step 8: Set h(Qy′)=result of Step 7. 
Step 9: Pass h(Qy′) to a function calling the GSL integration method chosen to integrate 

h(Qy′) with respect to Qy′. 
Step 10: Set q(Qx′)=result of Step 9. 
Step 11: Pass q(Qx′) to a function calling the GSL integration method chosen to integrate        

q(Qx′) with respect to Qx′. 
Step 12: Return the result of Step 11. 
 
To perform the integration at all data points  , it is necessary to 

include a loop to generate the data points and a loop to evaluate equation (1) at each data point. 
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5. PERFORMANCE EVALUATION 
 
5.1 PERFORMANCE METRICS: ACCURACY AND SPEED 

Accuracy and speed were used as the performance metrics to evaluate Implementation 1 and 
Implementation 2. Both methods of integrand implementation (Implementation 1and Implementation 
2) of QNG, QAG and QAGS were tested on several functions that could be solved analytically. 
Accuracy tests were performed using three different Genz functions [4] as integrands (see Table 1).  
To implement a Genz function as an integrand, the function R was taken to be of constant value 1 and 
the function S was taken to be the Genz function at the fixed point = (0,0,0,0). In 
other words, function f only depends on the S function (the Genz function). 

 
5.2 SENSITIVITY TO INTEGRAND 

Three of the Genz test functions in four dimensions were used to determine the sensitivity of 
quadrature methods to integrand: oscillatory, Gaussian and product peak. Again, it is assumed that S 
takes the form of these functions. The functions are defined in Table 1. The actual value comes from 
integrating from (-π/2, π/2) for each dimension. 

 
Table 1. Three Genz Functions 

Function Actual Value 

 16 

 
8.8708 

  
 
For ease of visualization, each function is plotted in two dimensions in Figure 3 (oscillatory), 

Figure 4 (Gaussian) and Figure 5 (product peak). 
 

 
Figure 3. Oscillatory  

 

 
  

Figure 4. Gaussian  
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Figure 5. Product Peak  
 

Each Genz function was tested using the integrand definition of both Implementation 1 and 
Implementation 2 for each of QNG, QAG and QAGS and many of Mathematica’s [10] numerical 
integration methods.  

The comparison with Mathematica’s methods provides valuable information about which 
methods might be promising for future implementation: the comparison of Mathematica’s various 
quadrature rules and Monte Carlo methods with Mathematica’s Gauss-Kronrod rule allows some 
standard for comparison to the implementation of the GSL solvers (which also use various Gauss-
Kronrod rules).  

In general, this provides a more comprehensive comparison of numerical methods. To gain an 
estimate of evaluation time for each numerical integration method a for loop was used to call 
integration 100 times when the integration took less than one second. The execution time was then 
divided by 100 to determine an average evaluation time. When integration is greater than one second, 
only one evaluation is performed. If a single integrand evaluation takes greater than 15 minutes, the 
evaluation is stopped. 

It can be concluded that all numerical integration methods are quite sensitive to the choice of 
integrand (not just quadrature methods). In general, it is not possible to numerically integrate 
functions with infinite discontinuities in the region of integration. Specifically, it was found that for 
the Gaussian and oscillatory functions, the GSL solvers perform with better accuracy than the Monte 
Carlo methods and the same accuracy as Mathematica’s quadrature methods. It was found that the 
product peak function is not integrable by any method. The quadrature methods return errors due to 
the integrand being infinity at 0 (an abscissa). The Monte Carlo methods return an incorrect value due 
to the steepness of the integrand’s slopes. Finally, it was found that the GSL solvers are among the 
fastest methods for solving the integrals. Results of the tests can be found in Table 2 (oscillatory), 
Table 3 (Gaussian) and Table 4 (product peak). Figure 6 (oscillatory) and Figure 7 (Gaussian) 
compare the different methods versus the execution time for evaluating the integral. 

It was found that for sufficiently smooth integrands, all solvers used in Implementation 1 
perform with perfect accuracy. When Implementation 2 is used, the solvers tend to perform with an 
average accuracy of 10-2. For, again, sufficiently smooth integrands, it was found that QNG was the 
fastest method on average, with Implementation 2 being faster than Implementation 1 at evaluating 
the same integrand. This is contrary to the expectation that both integrand implementations would 
perform similarly. Indeed, since function calls usually incur additional computational overhead and 
therefore, it would be expected that Implementation 2 performed more slowly. However, 
Implementation 2 is significantly faster at the cost of a lower precision. Therefore, users need to 
carefully weigh the tradeoff between speed and accuracy when choosing a specific implementation. 
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Table 2. Results of testing Genz Oscillatory function for GSL solvers and Mathematica’s 
methods 

Method Description 
Average 

Time/Integral 
(s) 

Accuracy 
(Returned-

Actual) 

N[Integrate[]] 
Evaluates analytically as far 

as possible, then 
numerically what remains 

 
0.46297 0 

NIntegrate[] 
Mathematica's default, 

adaptive numerical 
integrator 

 
0.28016 0 

NIntegrate[], Method: 
GlobalAdaptive 

Adaptive subdivisions 
based on global error 

estimates 
 

0.2764 0 

NIntegrate[], Method: 
GlobalAdaptive, Rule: 

CartesianRule 
Uses Cartesian product of 

rules for the quadrature rule 
 

0.09344 0 

NIntegrate[], Method: 
GlobalAdaptive, Rule: 
ClenshawCurtisRule 

Uses Clenshaw-Curtis rule 
for the quadrature rule 

 
20.1099 0 

NIntegrate[], Method: 
GlobalAdaptive, Rule: 

GaussKronrodRule 
Uses the Kronrod extension 

of Gaussian quadrature 
 

0.09421 0 

NIntegrate[], Method: 
GlobalAdaptive, Rule: 
LobattoKronrodRule 

Uses the Kronrod extension 
of Gauss-Lobatto 

quadrature 
 

1.25172 0 

NIntegrate[], Method: 
GlobalAdaptive, Rule: 

NewtonCotesRule 
Uses the Newton-Cotes rule 

to approximate 
 

689.813 0 

NIntegrate[], Method: 
GlobalAdaptive, Rule: 

TrapezoidalRule 
Uniform points in one 

dimension 
 

>15 min n/a 

NIntegrate[], Method: Local 
Adaptive 

Adaptive subdivisions 
based on local error 

estimates 
 

0.67 0 

NIntegrate[], Method: 
LocalAdaptive, Rule: 

CartesianRule 
Uses Cartesian product of 

rules for the quadrature rule 
 

0.69687 0 

NIntegrate[], Method: 
LocalAdaptive, Rule: 
ClenshawCurtisRule 

Uses Clenshaw-Curtis rule 
for the quadrature rule 

 
11.0053 0 

NIntegrate[], Method: 
LocalAdaptive, Rule: 
GaussKronrodRule 

Uses the Kronrod extension 
of Gaussian quadrature 

 
0.67219 0 



 

11 
 

NIntegrate[], Method: 
LocalAdaptive, Rule: 
LobattoKronrodRule 

Uses the Kronrod extension 
of Gauss-Lobatto 

quadrature 
 

0.66141 0 

NIntegrate[], Method: 
LocalAdaptive, Rule: 

NewtonCotesRule 
Uses the Newton-Cotes rule 

to approximate 
 

17.218 0 

NIntegrate[], Method: 
LocalAdaptive, Rule: 

TrapezoidalRule 
Uniform points in one 

dimension 
 

>15 min n/a 

NIntegrate[], Method: 
DoubleExponential 

Uses the Double 
Exponential (Tanh-Sinh) 

quadrature rule 
 

21.8628 0 

NIntegrate[], Method: 
MonteCarlo 

Uses Monte Carlo 
integration 

 
0.12469 0.2282 

NIntegrate[], Method: 
AdaptiveMonteCarlo 

Uses adaptive Monte Carlo 
integration 

 
0.26437 0.0789 

NIntegrate[], Method: 
QuasiMonteCarlo 

Uses quasi-Monte Carlo 
integration 

 
0.29078 0.0009 

NIntegrate[], Method: 
AdaptiveQuasiMonteCarlo 

Uses adaptive quasi-Monte 
Carlo integration 

 
2.36906 0.0119 

QNG – Implementation 1 GSL non-adaptive solver 0.03203 0 
QAG – Implementation 1 GSL adaptive solver 0.02453 0 

QAGS – Implementation 1 GSL adaptive solver for 
singularities 

 
0.06718 0 

QNG – Implementation 2 GSL non-adaptive solver 
0.218 

0.0001 

QAG – Implementation 2 GSL adaptive solver 
0.109 

0.0001 

QAGS – Implementation 2 GSL adaptive solver for 
singularities 0.218 

0.0001 

NOTE: n/a in Total Time means the integral was only evaluated once. n/a in Result means no result 
was returned 

Table 3. Results of testing Genz Gaussian function for GSL solvers and Mathematica’s methods 

Method Description Time/Integral 
(s) 

Accuracy 
(Returned-

Actual) 

NIntegrate[] 
Mathematica's default, 

adaptive numerical 
integrator 

0.40688 ~0 

N[Integrate[]] 
Evaluates analytically as 

far as possible, then 
numerically what remains 

0.23516 ~0 
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NIntegrate[], Method: 
GlobalAdaptive 

Adaptive subdivisions 
based on global error 

estimates 
0.40343 ~0 

NIntegrate[], Method: 
GlobalAdaptive, Rule: 

CartesianRule 

Uses Cartesian product of 
rules for the quadrature 

rule 
1.26578 ~0 

NIntegrate[], Method: 
GlobalAdaptive, Rule: 
ClenshawCurtisRule 

Uses Clenshaw-Curtis rule 
for the quadrature rule 9.875 ~0 

NIntegrate[], Method: 
GlobalAdaptive, Rule: 

GaussKronrodRule 

Uses the Kronrod 
extension of Gaussian 

quadrature 
1.406 ~0 

NIntegrate[], Method: 
GlobalAdaptive, Rule: 
LobattoKronrodRule 

Uses the Kronrod 
extension of Gauss-
Lobatto quadrature 

1.359 ~0 

NIntegrate[], Method: 
GlobalAdaptive, Rule: 

NewtonCotesRule 
Uses the Newton-Cotes 

rule to approximate 940.297 ~0 

NIntegrate[], Method: 
GlobalAdaptive, Rule: 

TrapezoidalRule 
Uniform points in one 

dimension >15 min n/a 

NIntegrate[], Method: 
Local Adaptive 

Adaptive subdivisions 
based on local error 

estimates 
0.09297 0.00002 

NIntegrate[], Method: 
LocalAdaptive, Rule: 

CartesianRule 

Uses Cartesian product of 
rules for the quadrature 

rule 
1.703 ~0 

NIntegrate[], Method: 
LocalAdaptive, Rule: 
ClenshawCurtisRule 

Uses Clenshaw-Curtis rule 
for the quadrature rule 8.812 ~0 

NIntegrate[], Method: 
LocalAdaptive, Rule: 
GaussKronrodRule 

Uses the Kronrod 
extension of Gaussian 

quadrature 
1.703 ~0 

NIntegrate[], Method: 
LocalAdaptive, Rule: 
LobattoKronrodRule 

Uses the Kronrod 
extension of Gauss-
Lobatto quadrature 

0.76907 ~0 

NIntegrate[], Method: 
LocalAdaptive, Rule: 

NewtonCotesRule 
Uses the Newton-Cotes 

rule to approximate 14.188 ~0 

NIntegrate[], Method: 
LocalAdaptive, Rule: 

TrapezoidalRule 
Uniform points in one 

dimension 234.406 ~0 
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NIntegrate[], Method: 
DoubleExponential 

Uses the Double 
Exponential (Tanh-Sinh) 

quadrature rule 
14.782 ~0 

NIntegrate[], Method: 
MonteCarlo 

Uses Monte Carlo 
integration 0.06641 0.12253 

NIntegrate[], Method: 
AdaptiveMonteCarlo 

Uses adaptive Monte 
Carlo integration 0.06313 0.03146 

NIntegrate[], Method: 
QuasiMonteCarlo 

Uses quasi-Monte Carlo 
integration 0.18906 0.00785 

NIntegrate[], Method: 
AdaptiveQuasiMonteCarlo 

Uses adaptive quasi-
Monte Carlo integration 0.22172 0.01324 

QNG – Implementation 1 GSL non-adaptive solver 0.03516 ~0 
QAG – Implementation 1 GSL adaptive solver 1.05031 ~0 

QAGS – Implementation 1 GSL adaptive solver for 
singularities 0.06969 ~0 

QNG – Implementation 2 GSL non-adaptive solver 0.187 ~0.022 

QAG – Implementation 2 GSL adaptive solver 2.937 ~0.022 

QAGS – Implementation 2 GSL adaptive solver for 
singularities 0.187 ~0.022 

NOTE: n/a in Total Time means the integral was only evaluated once. n/a in Result means no result 
was returned. Error is approximate due to the fact that the solution must be truncated at some value. 

Table 4. Results of testing Genz Product Peak function for GSL solvers and Mathematica’s 
methods 

Method Description Time/Integral 
(s) 

Accuracy 
(Returned-

Actual) 

NIntegrate[] 
Mathematica's 

default, adaptive 
numerical integrator 

1.89625 None returned 

N[Integrate[]] 
Evaluates analytically 

as far as possible, 
then numerically what 

remains 
0.32813 None returned 

NIntegrate[], Method: 
GlobalAdaptive 

Adaptive subdivisions 
based on global error 

estimates 
1.88782 None returned 

NIntegrate[], Method: 
GlobalAdaptive, Rule: 

CartesianRule 

Uses Cartesian 
product of rules for 
the quadrature rule 

70.9467 None returned 

NIntegrate[], Method: 
GlobalAdaptive, Rule: 
ClenshawCurtisRule 

Uses Clenshaw-Curtis 
rule for the quadrature 

rule 
38.953 None returned 
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NIntegrate[], Method: 
GlobalAdaptive, Rule: 

GaussKronrodRule 

Uses the Kronrod 
extension of Gaussian 

quadrature 
58.719 None returned 

NIntegrate[], Method: 
GlobalAdaptive, Rule: 
LobattoKronrodRule 

Uses the Kronrod 
extension of Gauss-
Lobatto quadrature 

38.078 None returned 

NIntegrate[], Method: 
GlobalAdaptive, Rule: 

NewtonCotesRule 

Uses the Newton-
Cotes rule to 
approximate 

4.547 None returned 

NIntegrate[], Method: 
GlobalAdaptive, Rule: 

TrapezoidalRule 
Uniform points in one 

dimension 39.39 None returned 

NIntegrate[], Method: 
Local Adaptive 

Adaptive subdivisions 
based on local error 

estimates 
>15 min n/a 

NIntegrate[], Method: 
LocalAdaptive, Rule: 

CartesianRule 

Uses Cartesian 
product of rules for 
the quadrature rule 

>15 min n/a 

NIntegrate[], Method: 
LocalAdaptive, Rule: 
ClenshawCurtisRule 

Uses Clenshaw-Curtis 
rule for the quadrature 

rule 
>15 min n/a 

NIntegrate[], Method: 
LocalAdaptive, Rule: 
GaussKronrodRule 

Uses the Kronrod 
extension of Gaussian 

quadrature 
>15 min n/a 

NIntegrate[], Method: 
LocalAdaptive, Rule: 
LobattoKronrodRule 

Uses the Kronrod 
extension of Gauss-
Lobatto quadrature 

>15 min n/a 

NIntegrate[], Method: 
LocalAdaptive, Rule: 

NewtonCotesRule 

Uses the Newton-
Cotes rule to 
approximate 

>15 min n/a 

NIntegrate[], Method: 
LocalAdaptive, Rule: 

TrapezoidalRule 
Uniform points in one 

dimension >15 min n/a 

NIntegrate[], Method: 
DoubleExponential 

Uses the Double 
Exponential (Tanh-

Sinh) quadrature rule 
0.02687 None returned 

NIntegrate[], Method: 
MonteCarlo 

Uses Monte Carlo 
integration 0.18453 O(1011) 

NIntegrate[], Method: 
AdaptiveMonteCarlo 

Uses adaptive Monte 
Carlo integration 0.16359 O(1025) 

NIntegrate[], Method: 
QuasiMonteCarlo 

Uses quasi-Monte 
Carlo integration 0.35797 O(1014) 



 

15 
 

NIntegrate[], Method: 
AdaptiveQuasiMonteCarlo 

Uses adaptive quasi-
Monte Carlo 
integration 

0.09266 O(1018) 

QNG – Implementation 1 GSL non-adaptive 
solver n/a n/a 

QAG – Implementation 1 GSL adaptive solver n/a n/a 

QAGS – Implementation 1 GSL adaptive solver 
for singularities n/a n/a 

QNG – Implementation 2 GSL non-adaptive 
solver n/a n/a 

QAG – Implementation 2 GSL adaptive solver n/a n/a 

QAGS – Implementation 2 GSL adaptive solver 
for singularities n/a n/a 

NOTE: N/A in Total Time means the integral was only evaluated once. N/A in Result and 
Time/Integral means no result was returned. 

 

 
Figure 6. Method vs. Time/Integral plots of the Genz Oscillatory function 

 
 



 

16 
 

 

 
Figure 7. Method vs. Time/Integral for Genz Gaussian function 

 
5.3 SERIAL TEST ON EQUATION (1) 
 The example integrand (R defined in (2), S defined in (3)-(10)) at the point 

= (-1,-1,-1,0) was evaluated using Implementation 1 and Implementation 2 for 
each of QNG, QAG, and QAGS. The results can be found in Table 5. Accuracy is defined as the 
difference between the returned value and the true value. 

Table 5. Results of testing equation (1) 
Implementation	
  1	
   Time	
  (s)	
   Returned	
   Accuracy	
  

QNG	
   Error:	
  failed	
  to	
  reach	
  tolerance	
  with	
  highest-­‐order	
  rule	
   	
   	
  
QAG	
   13290.843	
   29.9458	
   ~0.00116	
  
QAGS	
   46920.328	
   29.9458	
   ~0.00116	
  

Implementation	
  2	
   Time	
  (s)	
   Returned	
   Accuracy	
  
QNG	
   Error:	
  failed	
  to	
  reach	
  tolerance	
  with	
  highest-­‐order	
  rule	
   	
   	
  
QAG	
   7902.8	
   29.9458	
   ~0.00116	
  
QAGS	
   31401.5	
   29.9458	
   ~0.00116	
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It can be seen that neither version of QNG was capable of solving the final integrand. The fastest 
evaluation, by Implementation 2 of QAG, took more than two hours. All four tests returning a result 
returned the same result: 29.9458. The extreme time required for solving this integrand can be 
attributed to two things. First, quadrature methods perform best on sufficiently smooth functions in 
low dimensions (three dimensions or less). This integrand is not sufficiently smooth for these 
methods and the dimension of the problem is larger than ideal. Second, the method of recursively 
calling one-dimensional integration four times can be computationally expensive. In particular, the 
weights and abscissas must be generated each time integration is performed. 
 

  
6. CONCLUSIONS AND FUTURE WORK 

 
 To evaluate all 1012 integrals for the full problem would take more than 225 million years using 
the fastest method, Implementation 2 of QAG (over  two hours to solve the integral at one point).  
This is too slow to be useful. Especially by comparison to the Monte Carlo methods implemented by 
others: evaluating the final integrand at the point = (-1,-1,-1,0) took less than a 
second using a similarly implemented quasi-Monte Carlo method. Since parallelization of the code 
was to be done by parallelizing over data points, it is not a worthwhile exercise to parallelize any of 
the quadrature methods currently implemented. 

 Future work on quadrature methods should explore alternative implementations. Recall, the 
method implemented here was to call one-dimensional solvers recursively four times. While this is an 
intuitive first method (it mimics the order of analytical integration by hand), it is clearly not 
sufficiently efficient. An alternative method is to explore generating four-dimensional quadrature 
rules. A simple four-dimensional rule would be to take either the Cartesian or tensor product of one-
dimensional rules (see [8]). The four-dimensional rule would then be summed once to approximate 
the integral, as compared to the previous method of summing a one-dimensional rule four times. 
There is open-source code available that can serve as a starting point in such a construction (see 
Appendix C). However, it will require significant modification to solve arbitrary integrals efficiently. 
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APPENDIX A.  ENVIRONMENT SETUP 
 

Eclipse 
The Eclipse Galileo C/C++ IDE version 3.5 for a 32-bit Windows machine was downloaded 

from 
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/helios/R/e
clipse-cpp-helios-win32.zip. The automatic download process went smoothly and the program was 
installed at C:\Users\8y7\Documents\eclipse-cpp-galileo-SR2-win32. Eclipse requires the download 
of a complier (either Cygwin or MinGW compilers are recommended) in order to work.  

Following the recommendations of the “Before you begin” section of the Eclipse C/C++ 
Development User Guide (under the help section of Eclipse), the MinGW compiler and gdb debugger 
were installed. Specifically, MinGW version 5.1.6 was downloaded as MinGW-5.1.6.exe from 
http://sourceforge.net/projects/mingw/files/, following the links from the “Before you begin” guide. It 
was downloaded to C:\MinGW.  
 The only possible dependencies clear from the instructions in the “Before you begin” guide were 
the gdb debugger and MSYS. Hence gdb-6.6.tar.bz2 was downloaded from 
http://sourceforge.net/mingw/gdb-6.6.tar.bz2, also following the links from the “Before you begin” 
guide. Following the recommendation of the guide to extract the contents of the debugger to the same 
location where MinGW was installed, the contents were extracted to C:\MinGW under the folder 
“debugger” (C:\MinGW\debugger). To install MSYS, msys-1.0.10.exe was downloaded from 
http://sourceforge.net/projects/mingw/files/MSYS/BaseSystem/msys-1.0.10/MSYS-
1.0.10.exe/download. The msys-1.0.10.exe was run and MSYS was installed in C:\msys\1.0. The 
installation auto-suggested MinGW as location of program's shortcuts and this option was selected. 
 To use the solvers from the GSL, the GSL must be properly linked to Eclipse. Unfortunately, 
there does not appear to be any comprehensive or formal instructions for doing this available. 
Instructions from 
http://www.eclipse.org/forums/index.php?t=msg&goto=231303&S=e12b33cc44ec8098c3abf3d5a3bc
9056#msg_231303, http://www.eclipse.org/forums/index.php?t=msg&goto=497917&  and 
http://whatwouldnickdo.com/wordpress/328/eclipse-cdt-and-linux-libraries/ are being used to link the 
library.  
 Specifically, gsl-1.11.tar.gz was downloaded from ftp://mirrors.usc.edu/pub/gnu/gsl/ (a mirror 
from the GSL website) and its files were extracted to C:\Users\8y7\workspace. In Eclipse,  
"C:\Users\8y7\workspace\gsl-1.11\include"(quotes included) was added to Project Properties -> 
C/C++ General -> Paths and Symbols -> Include for both Gnu C and Gnu C++ languages. GSL was 
added to Project Properties -> C/C++ Build -> Settings -> Tool Settings -> MinGW C++ Linker -> 
Libraries -> Libraries (-l). And "C:\Users\8y7\workspace\gsl-1.11" (quotes included) was added to 
Project Properties -> C/C++ Build -> Settings -> Tool Settings -> MinGW C++ Linker -> Libraries    
-> Library Search Path (-L). This, however, presents errors when trying to run a sample program that 
calls GSL functions (such as the one from the GSL manual available at 
http://www.gnu.org/software/gsl/manual/html_node/Numerical-integration-examples.html).  
 Therefore, Eclipse was used primarily as a text editor. Cygwin was used for compiling and 
running programs since it includes the GSL. 
Cygwin 
 Cygwin was downloaded as an alternative to linking the GSL to Eclipse. Following the link from 
the Cygwin website http://www.cygwin.com/, setup.exe was downloaded and run. The setup is fairly 
automated and files are installed at C:/cygwin. The mirror ftp://ftp.gtlib.gatech.edu was chosen. The 
“Install” option was chosen for all files (rather than the “Default”).  Any dependencies the installer 
recognized were fixed automatically. 
 Testing the same GSL example program used in Eclipse (available at 
http://www.gnu.org/software/gsl/manual/html_node/Numerical-integration-examples.html) resulted 
in a successful run with results that match those given by the GSL.  
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The GSL was installed and compiled on the Oak Ridge Institutional Cluster (OIC) by logging 
on to the OIC and using the commands: 
scp gsl-1.11.tar.gs userid@bes-inter.ornl.gov:~/  
gunzip gsl-1.11.tar.gz 
tar –xvf gsl-1.11.tar 
mkdir libgsl 
./configure --prefix=/home/PATH_WHERE_GSL_INSTALLED 
make 
make check 
make install 
make clean 
No errors were returned during this process.  
Using the commands: 
 
export LD_LIBRARY_PATH=/home/PATH_WHERE_GSL_INSTALLED/lib: 
$LD_LIBRARY_PATH 
 
g++ main.cpp -o main -I/home/ PATH_WHERE_GSL_INSTALLED/include -L/home/ 
PATH_WHERE_GSL_INSTALLED/lib –lgsl -lgslcblas –lm 
 
successfully runs a program main.cpp on the OIC using the GSL.  
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APPENDIX B.  LIST OF LINKS TO RESOURCES USED 

 
1. Website to download Eclipse: 

http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/he
lios/R/eclipse-cpp-helios-win32.zip 

2. Website to download MinGW compiler: http://sourceforge.net/projects/mingw/files/ 
3. Website to download gdb debugger: http://sourceforge.net/mingw/gdb-6.6.tar.bz2 
4. Website to download MSYS: 

http://sourceforge.net/projects/mingw/files/MSYS/BaseSystem/msys-1.0.10/MSYS-
1.0.10.exe/download 

5. Website 1 for instructions linking the GSL to Eclipse (unsuccessful): 
http://www.eclipse.org/forums/index.php?t=msg&goto=231303&S=e12b33cc44ec8098c3abf
3d5a3bc9056#msg_231303 

6. Website 2 for instructions linking the GSL to Eclipse (unsuccessful): 
http://www.eclipse.org/forums/index.php?t=msg&goto=497917&  

7. Website 3 for instructions linking the GSL to Eclipse (unsuccessful): 
http://whatwouldnickdo.com/wordpress/328/eclipse-cdt-and-linux-libraries/ 

8. Mirror GSL was downloaded from: ftp://mirrors.usc.edu/pub/gnu/gsl/ 
9. Example used to test GSL installation: 

http://www.gnu.org/software/gsl/manual/html_node/Numerical-integration-examples.html 
10. Cygwin website setup.exe was downloaded from: http://www.cygwin.com/ 
11. Mirror Cygwin was downloaded from: ftp://ftp.gtlib.gatech.edu 
12. Location of quadrule collection of code: 

http://people.sc.fsu.edu/~jburkardt/cpp_src/quadrule/quadrule.html. 
13. Tutorial on passing pointers to functions: http://www.cplusplus.com/doc/tutorial/pointers/ 
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APPENDIX C.  REVIEW OF QUADRULE – A COLLECTION OF CODE USEFUL FOR 
FUTURE RESEARCH 

 
Collection of code available at http://people.sc.fsu.edu/~jburkardt/cpp_src/quadrule/quadrule.html. 
The variety of code provides excellent examples. The general organization of the available programs 
also  raises an interesting idea that may cut down on computing time: to have the weights and 
abscissas pre-computed and read in from a text file.   
Some of the programs examined in detail were: 

• quad_mpi – a parallelized example of a one-dimensional numerical integration 
• quadrature_test – “a program which reads the definition of a multidimensional quadrature 

rule from three files, applies the rule to a number of test integrals, and prints the results.” 
• quadrule –“a library which defines quadrature rules for approximating integrals;” i.e., have to 

use both quadrule and quadrature_test to evaluate an integral, also have to pick a rule 
• product_rule – “a C++ program which creates a multidimensional quadrature rule by using a 

product of one-dimensional quadrature rules.” 
• quadrature_rules – “a dataset directory which contains examples of quadrature rules.” 
• sparse_grid_gp – “a dataset directory which contains examples of sparse grids, using the idea 

of a level to control the number of points, and assigning point locations using the Gauss 
Patterson rule.” 

A variety of other quadrature rules are implemented in the same source. Unfortunately, all of the 
implementations are non-adaptive. So to develop an adaptive solver using one four-dimensional 
quadrature rule (as in [8]), rather than recursively calling four one-dimensional rules, it would be 
necessary to combine elements from a variety of the code available. For example, sparse_grid_gp 
could be used to generate the one-dimensional rule used by  product_rule to generate the four-
dimensional rule.  Then quadrature_test could be used as a basis to develop a solver using the four-
dimensional rule. Note that it would have to be made adaptive.  To parallelize, quad_mpi would need 
to be expanded to handle four-dimensional integrands and the four-dimensional adaptive solver.  
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