
1

ORNL/TM-2008/00

Technical Report: Toward a Scalable
Algorithm to Compute High-Dimensional
Integrals of Arbitrary Functions

8/13/2010

Prepared by
Abigail Snyder
Summer Intern 2010

Yu (Cathy) Jiao, Ph.D.
R&D Staff

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of
Energy (DOE) Information Bridge.

 Web site http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source.

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Web site http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
(ETDE) representatives, and International Nuclear Information System (INIS) representatives from
the following source.

 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Web site http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

ORNL/TM-2008/00

Toward a Scalable Algorithm to Compute High-Dimensional Integrals of Arbitrary
Functions

Abigail Snyder
Yu (Cathy) Jiao, Ph.D.

Date Published: August, 2010

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6283
managed by

UT-BATTELLE, LLC
for the

U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

iii

CONTENTS
Page

	

	

v

LIST OF FIGURES
Page

vi

LIST OF TABLES
Page

	

	

1

ABSTRACT

Neutron experiments at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory
(ORNL) frequently generate large amounts of data (on the order of 106-1012 data points). Hence,
traditional data analysis tools run on a single CPU take too long to be practical and scientists are unable to
efficiently analyze all data generated by experiments. Our goal is to develop a scalable algorithm to
efficiently compute high-dimensional integrals of arbitrary functions. This algorithm can then be used to
integrate the four-dimensional integrals that arise as part of modeling intensity from the experiments at
the SNS. Here, three different one-dimensional numerical integration solvers from the GNU Scientific
Library were modified and implemented to solve four-dimensional integrals. The results of these solvers
on a final integrand provided by scientists at the SNS can be compared to the results of other methods,
such as quasi-Monte Carlo methods, computing the same integral. A parallelized version of the most
efficient method can allow scientists the opportunity to more effectively analyze all experimental data.

1. INTRODUCTION AND MOTIVATION

High-dimensional integrals arise in many areas of science, particularly physics and experimental

mathematics. Specifically, experiments performed at the Spallation Neutron Source produce huge
quantities of data. Traditional approaches to analyzing the data involve a more or less brute force
application of numerical integration schemes such as the Monte Carlo methods. However, when applied
to 1012 data points, this approach becomes intractably time consuming. Hence, it is necessary to develop
an algorithm that modifies, parallelizes and implements a more traditional numerical integration scheme
efficiently and scalably. By developing an efficient, scalable algorithm, the data from SNS experiments
can be successfully analyzed in full. The goal of scalability is an important one so that the analysis may
be performed on both large computing clusters and individual computers with multi-core processors
(given that a desktop with 4-8 processing cores is now common). A search of the literature shows that
there is no such highly parallel adaptive quadrature solver for high-dimensional integrals currently
available.

2

2. LITERATURE REVIEW

As computers have become more powerful, research into numerical techniques has attempted to
make use of each improvement. Thus, there exists a huge amount of literature on the topic of
numerical integration in general and specifically on algorithms to compute high-dimensional
integrals. The difficulty is finding literature that deals with arbitrary (rather than smooth) integrands.
The most common methods are Monte Carlo, quasi-Monte Carlo and quadrature methods. Figure 1
shows the numerical integration algorithms considered.

Figure 1. Numerical integration algorithms

2.1 MONTE CARLO METHOD

The textbook by Lemieux provides an introduction to Monte Carlo methods. Simple Monte Carlo
integration approximates an integral as the average of the value of the integrand function evaluated at
N pseudorandom points in the domain of integration, i.e.

for N pseudorandom points xi in the volume of the domain of integration V [8]. Unfortunately, this
method has some very serious weakness lying in the nature of pseudorandom numbers.
Pseudorandom numbers can cluster in the space of integration, causing one region of the space to
weight the sample more heavily than others [8]. This leads to lower accuracy.

Two popular methods used to deal with this weakness are recursive stratified sampling and
importance sampling. Recursive stratified sampling (similar to the popular algorithm MISER)
estimates the error following a Monte Carlo integration. If the error is too large, the region is
subdivided and each subregion is integrated, repeating until the error estimate meets a desired
tolerance. To keep the number of subdivisions at a minimum, the region is subdivided only in the
dimension that will be most beneficial [5]. Unfortunately, this choice of dimension depends on the
integrand function and so recursive stratified sampling does not lend itself to evaluating an arbitrary
integral. Importance sampling (similar to the popular algorithm VEGAS) takes its points xi for
evaluation from the probability distribution described by |f|. This allows for the xi’s to come from the
regions of integration contributing most to the value of the integral [5]. Again, this does not lend itself
to implementation in a general solver for the evaluation of an arbitrary integral.

3

2.2 QUASI-MONTE CARLO METHOD
The quasi-Monte Carlo method uses the same approximation as the Monte Carlo method except

that it evaluates f at points xi of a low-discrepancy sequence (rather than pseudorandom numbers).
The idea of a low-discrepancy sequence is that the space of integration is covered by points for
evaluation in more ordered and better-covering way [5]. One of the more popular low-discrepancy
sequences used for quasi-Monte Carlo integration is the Sobol sequence, in which each xi is
determined by using a primitive polynomial and performing bit-by-bit exclusive-or operations on
combinations of the coefficients of the primitive polynomial and previous terms. It is detailed in [1].

2.3 ONE-DIMENSIONAL GAUSSIAN QUADRATURE METHOD

Generally, Gaussian quadrature approximates an integral by

for weights wi and abscissas xi coming from a chosen orthogonal polynomial [5]. Non-adaptive
quadrature methods will simply stop following this evaluation. Adaptive quadrature methods perform
an error estimate on the evaluation and, if the error exceeds a given tolerance, the region of
integration is subdivided and the quadrature rule is applied separately to each subregion. That is, the
region of integration is initially covered with N points to approximate the integral by an N-point
quadrature rule. Following subdivision, 2N points are used to approximate the integral by applying an
N-point quadrature rule to two subregions. This is repeated for any subregion with large error until
the error tolerance is reached [5]. By focusing on regions with the largest error, adaptive methods are
more capable of handling difficult (quickly changing for example) integrands than non-adaptive
methods because it is possible to break difficult areas down into areas small enough to eliminate the
difficulties locally. Unfortunately, this can be quite time-consuming. However, in one-dimension, it is
still quite efficient [5].

Gauss-Kronrod rules are an extension of a given N-point Gauss rule. The Kronrod extension adds
N+1 points to the N-point rule, yielding a higher-order rule without having to recalculate entirely new
points (the original N points get reused) [7]. The difference between an evaluation using the Gauss
rule and an evaluation using the corresponding Gauss-Kronrod rule provides a convenient error
estimate for use in adaptive schemes.

2.4 MULTI-DIMENSIONAL GAUSSIAN QUADRATURE METHODS

There are two approaches to using multi-dimensional Gaussian quadrature. The first is to
recursively call one-dimensional quadrature rules [5].That is, integrate with respect to x1. Then
integrate the result with respect to x2. This result is then integrated with respect to x3, and so on. This
advantage to this is that it mimics integration by hand and so is very intuitive. And it does work fairly
well for smooth integrands in low dimensions [5]. However, it can become very inefficient for
complicated integrands or in higher dimensions. The second option is to develop a multi-dimensional
quadrature rule, such as by using Smolnyak’s construct and taking the tensor product of one-
dimensional rules. For integrands that are functions with bounded mixed derivatives, this proves to be
very efficient when Gauss-Patterson quadrature rules (an extension that goes beyond the Kronrod
extension) are used (even in comparison to quasi-Monte Carlo methods)[7]. The main disadvantage is
that this is a much more complicated method to develop rigorously and implement.

2.5 PARALLEL NUMERICAL INTEGRATION

In general, there is significantly more work involved in efficiently parallelizing an adaptive
quadrature method than in parallelizing a Monte Carlo method. This is due to the more challenging
requirements for proper load distribution. It has been concluded [2] that the most efficient method is
using a message passing programming model with each processor maintaining an independent list of

4

subregions and where the load is balanced by comparing error with a fixed neighbor after a fixed
number of integrations and transferring the subregions with the largest error to the neighbor. The
number of integrations can be reduced to further improve efficiency. The issue with the reduced
method is that it is dependent on a parameter that may take some time to tune. It has further been
shown [9] that adaptive quadrature methods parallelized in this way can perform better than a
parallelized quasi-Monte Carlo method for certain types of integrands (mostly smooth) and in very
low dimensions (<5) both in terms of accuracy versus processing time and accuracy per integrand
evaluation. Unfortunately, scalability has only been explored up to 16 [9] and 30 [2] processors and
there does not appear to exist a highly-parallel adaptive quadrature method.

3. STATE OF THE ART

3.1 EXISTING SOFTWARE PACKAGES
There are a variety of algorithms and source code available for numerical integration. The two

freely available, open source software packages examined were the GNU Scientific Library (GSL) [6]
and the QUADRULE package [3].

The GSL offers a variety of solvers for one-dimensional numerical integration. Specifically, it
includes solvers capable of solving functions with singularities, functions with known singular points,
functions on an infinite interval, singular functions, oscillatory functions and Fourier integrals. The
majority of the implementations are adaptive.

The QUADRULE package contains a huge amount of source code for generating different
quadrature rules and implementing the generated rules in a non-adaptive solver. In general, it is an
excellent resource as a basis to start writing code for a solver, but it would not be possible to
implement a truly accurate, efficient multidimensional solver with only the available source code. See
Appendix C for more details regarding the necessary steps to use QUADRULE as a basis for a
multidimensional solver. Some of the programs examined in detail were (with Burkardt’s description
of what each does):

• quad_mpi – a parallelized example of a one-dimensional numerical integration
• quadrature_test – “a program which reads the definition of a multidimensional quadrature

rule from three files, applies the rule to a number of test integrals, and prints the results.”
• quadrule –“a library which defines quadrature rules for approximating integrals;” i.e., have to

use both quadrule and quadrature_test to evaluate an integral, also have to pick a rule
• product_rule – “a C++ program which creates a multidimensional quadrature rule by using a

product of one-dimensional quadrature rules.”
• quadrature_rules – “a dataset directory which contains examples of quadrature rules.”
• sparse_grid_gp – “a dataset directory which contains examples of sparse grids, using the idea

of a level to control the number of points, and assigning point locations using the Gauss
Patterson rule.”

It is clear that each of these programs provides very useful elements. However, directly combining
several of them will not result in a comprehensive, efficient multidimensional solver.

3.2 ALGORITHM SELECTION
In general, Monte Carlo methods perform faster than Gaussian quadrature. However, this

speed comes at the cost of lower precision. Therefore, it is necessary to compare the performance of
both Monte Carlo and quadrature methods on several test integrals in order to determine which

5

performs with the desired combination of precision and speed. This research focuses on recursively
calling one-dimensional adaptive quadrature solvers four times to solve a four-dimensional integral.
This method was chosen as a first approach due to the ready availability of open-source code that
could be easily adapted. Future approaches may involve developing a four-dimensional quadrature
rule and an adaptive solver using it.

Functions from [5] serve as the basis of the framework for recursive integration, calling each
of three different solvers from the GNU Scientific Library (GSL) [6]. The solvers chosen from the
GSL as the final choices for implementation are QNG, QAG, and QAGS.

QNG is a non-adaptive method that successively applies the 10-point, 21-point, 43-point and
87-point Gauss-Kronrod integration rules until the estimate of integral is within desired error limits.
This makes the QNG method closer to an adaptive method than a truly non-adaptive method.
Adaptive methods intelligently subdivide only the regions where the error exceeds a given tolerance;
QNG subdivides the entire region when the error exceeds a given tolerance.

QAG adaptively applies a 15, 21, 31, 41, 51, or 61 point Gauss-Kronrod rule according to the
user’s choice until the estimate of the integral is within desired error limits. This can require a user to
do extra testing to determine the most efficient choice for solving an integral.

QAGS adaptively applies a 21 point Gauss-Kronrod rule until the estimate of the integral is
within desired error limits. While it is capable of handling some functions with singularities (unlike
QNG or QAG), it cannot solve a function when the singularity occurs at an abscissa.

4. IMPLEMENTATION

4.1 GOAL
The goal is to solve a final integral from experiments at the Spallation Neutron Source

calculating the intensity at a given point :
 (1)

for machine resolution function and neutron scattering function . This is the integral
that must be computed at the 1012 data points.
The resolution function, for R0 constant and M a symmetric matrix, is given by:

 (2)
The scattering function is given by:

 (3)
for

 (4)

 (5)
where maxincoh is a constant parameter and sincoh is the standard deviation.

 (6)
where maxint is a constant parameter, sigmaE is the standard deviation, w is the dispersion given by:

 (7)
fdperp is a dimer form factor given by:

 (8)
 and ff is a magnetic form factor given by:

 (9)

6

for eight element arrays j0 and j2 and s2 given by:

 (10)
for constants a, b and c

While the space of data is infinite, the limits of integration must be rescaled in each

dimension to make the problem finite and more easily solvable. After rescaling, the new limits of
integration become (–π/2, π/2) for each dimension. This rescaling is performed by sending each
variable to the tangent of that variable, i.e. .

4.2 IMPLEMENTATION DETAILS

The function quad3d.h from [5] was used as a basis to develop a program that recursively
calls GSL one-dimensional integration solvers four times to solve a four dimensional integral. The
main programming challenge was the strict function definition requirements of the GSL solvers.
This necessitated the global definition of limits of integration and error tolerances (parameters that
GSL integrators call) since the function definitions of each round of integration cannot be changed to
accommodate passing the limits of integration as parameters. The general algorithm for numerical
integration is depicted in Figure 2.

Figure 2. Flowchart depicting numerical integration

Two methods of implementing the integrand function f were explored. Both use the same
algorithm for numerical integration. The difference is that Implementation 1 defines the integrand
explicitly within the function f and Implementation 2 defines the integrand as external functions
called by f. When evaluating the same integral, both implementations should return the same result at
about the same speed. However, our experiments contradict this assumption. The first implementation

7

uses the following pseudo code:
Implementation 1 – Integrand Explicitly Defined in f

Step 1: Define the function to be integrated (for fixed)
f()= , the limits of integration and error
tolerances.

Step 2: Pass f(Qx′, Qy′, Qz′, E′) to a framework function that holds Qx′, Qy′ and Qz′ fixed,
i.e. that sets f(Qx′, Qy′, Qz′, E′) = f(E′).

Step 3: Pass f(E′) to a function calling the GSL integration method chosen to integrate f(e)
with respect to E′.

Step 4: Set g(Qz′)=result of Step 3.
Step 5: Pass g(Qz′) to a function calling the GSL integration method chosen to integrate

g(Qz′) with respect to Qz′.
Step 6: Set h(Qy′)=result of Step 5.
Step 7: Pass h(Qy′) to a function calling the GSL integration method chosen to integrate

h(Qy′) with respect to Qy′.
Step 8: Set q(Qx′)=result of Step 7.
Step 9: Pass q(Qx′) to a function calling the GSL integration method chosen to integrate

q(Qx′) with respect to Qx′.
Step 10: Return the result of Step 9.

The second implementation for the integrand function f used in equation (1) at a fixed data point
 is to have the integrand function f call the separately defined resolution

and scattering functions. By comparison, Implementation 1 would have the resolution and scattering
functions explicitly defined in the integrand function f. The pseudo code is very similar to
Implementation 1, with only the implementation of the integrand function f changing:

Implementation 2 – Integrand Defined Separately and Called by f
Step 1: Define the resolution function R.
Step 2: Define the scattering function S.
Step 3: Define the function to be integrated (for fixed)

f()= , the limits of integration and error
tolerances.

Step 4: Pass f(Qx′, Qy′, Qz′, E′) to a framework function that holds Qx′, Qy′ and Qz′ fixed,
i.e. that sets f(Qx′, Qy′, Qz′, E′) = f(E′).

Step 5: Pass f(E′) to a function calling the GSL integration method chosen to integrate f(e)
with respect to E′.

Step 6: Set g(Qz′)=result of Step 5.
Step 7: Pass g(Qz′) to a function calling the GSL integration method chosen to integrate

g(Qz′) with respect to Qz′.
Step 8: Set h(Qy′)=result of Step 7.
Step 9: Pass h(Qy′) to a function calling the GSL integration method chosen to integrate

h(Qy′) with respect to Qy′.
Step 10: Set q(Qx′)=result of Step 9.
Step 11: Pass q(Qx′) to a function calling the GSL integration method chosen to integrate

q(Qx′) with respect to Qx′.
Step 12: Return the result of Step 11.

To perform the integration at all data points , it is necessary to

include a loop to generate the data points and a loop to evaluate equation (1) at each data point.

8

5. PERFORMANCE EVALUATION

5.1 PERFORMANCE METRICS: ACCURACY AND SPEED

Accuracy and speed were used as the performance metrics to evaluate Implementation 1 and
Implementation 2. Both methods of integrand implementation (Implementation 1and Implementation
2) of QNG, QAG and QAGS were tested on several functions that could be solved analytically.
Accuracy tests were performed using three different Genz functions [4] as integrands (see Table 1).
To implement a Genz function as an integrand, the function R was taken to be of constant value 1 and
the function S was taken to be the Genz function at the fixed point = (0,0,0,0). In
other words, function f only depends on the S function (the Genz function).

5.2 SENSITIVITY TO INTEGRAND

Three of the Genz test functions in four dimensions were used to determine the sensitivity of
quadrature methods to integrand: oscillatory, Gaussian and product peak. Again, it is assumed that S
takes the form of these functions. The functions are defined in Table 1. The actual value comes from
integrating from (-π/2, π/2) for each dimension.

Table 1. Three Genz Functions

Function Actual Value

 16

8.8708

For ease of visualization, each function is plotted in two dimensions in Figure 3 (oscillatory),

Figure 4 (Gaussian) and Figure 5 (product peak).

Figure 3. Oscillatory

Figure 4. Gaussian

9

Figure 5. Product Peak

Each Genz function was tested using the integrand definition of both Implementation 1 and
Implementation 2 for each of QNG, QAG and QAGS and many of Mathematica’s [10] numerical
integration methods.

The comparison with Mathematica’s methods provides valuable information about which
methods might be promising for future implementation: the comparison of Mathematica’s various
quadrature rules and Monte Carlo methods with Mathematica’s Gauss-Kronrod rule allows some
standard for comparison to the implementation of the GSL solvers (which also use various Gauss-
Kronrod rules).

In general, this provides a more comprehensive comparison of numerical methods. To gain an
estimate of evaluation time for each numerical integration method a for loop was used to call
integration 100 times when the integration took less than one second. The execution time was then
divided by 100 to determine an average evaluation time. When integration is greater than one second,
only one evaluation is performed. If a single integrand evaluation takes greater than 15 minutes, the
evaluation is stopped.

It can be concluded that all numerical integration methods are quite sensitive to the choice of
integrand (not just quadrature methods). In general, it is not possible to numerically integrate
functions with infinite discontinuities in the region of integration. Specifically, it was found that for
the Gaussian and oscillatory functions, the GSL solvers perform with better accuracy than the Monte
Carlo methods and the same accuracy as Mathematica’s quadrature methods. It was found that the
product peak function is not integrable by any method. The quadrature methods return errors due to
the integrand being infinity at 0 (an abscissa). The Monte Carlo methods return an incorrect value due
to the steepness of the integrand’s slopes. Finally, it was found that the GSL solvers are among the
fastest methods for solving the integrals. Results of the tests can be found in Table 2 (oscillatory),
Table 3 (Gaussian) and Table 4 (product peak). Figure 6 (oscillatory) and Figure 7 (Gaussian)
compare the different methods versus the execution time for evaluating the integral.

It was found that for sufficiently smooth integrands, all solvers used in Implementation 1
perform with perfect accuracy. When Implementation 2 is used, the solvers tend to perform with an
average accuracy of 10-2. For, again, sufficiently smooth integrands, it was found that QNG was the
fastest method on average, with Implementation 2 being faster than Implementation 1 at evaluating
the same integrand. This is contrary to the expectation that both integrand implementations would
perform similarly. Indeed, since function calls usually incur additional computational overhead and
therefore, it would be expected that Implementation 2 performed more slowly. However,
Implementation 2 is significantly faster at the cost of a lower precision. Therefore, users need to
carefully weigh the tradeoff between speed and accuracy when choosing a specific implementation.

10

Table 2. Results of testing Genz Oscillatory function for GSL solvers and Mathematica’s
methods

Method Description
Average

Time/Integral
(s)

Accuracy
(Returned-

Actual)

N[Integrate[]]
Evaluates analytically as far

as possible, then
numerically what remains

0.46297 0

NIntegrate[]
Mathematica's default,

adaptive numerical
integrator

0.28016 0

NIntegrate[], Method:
GlobalAdaptive

Adaptive subdivisions
based on global error

estimates

0.2764 0

NIntegrate[], Method:
GlobalAdaptive, Rule:

CartesianRule
Uses Cartesian product of

rules for the quadrature rule

0.09344 0

NIntegrate[], Method:
GlobalAdaptive, Rule:
ClenshawCurtisRule

Uses Clenshaw-Curtis rule
for the quadrature rule

20.1099 0

NIntegrate[], Method:
GlobalAdaptive, Rule:

GaussKronrodRule
Uses the Kronrod extension

of Gaussian quadrature

0.09421 0

NIntegrate[], Method:
GlobalAdaptive, Rule:
LobattoKronrodRule

Uses the Kronrod extension
of Gauss-Lobatto

quadrature

1.25172 0

NIntegrate[], Method:
GlobalAdaptive, Rule:

NewtonCotesRule
Uses the Newton-Cotes rule

to approximate

689.813 0

NIntegrate[], Method:
GlobalAdaptive, Rule:

TrapezoidalRule
Uniform points in one

dimension

>15 min n/a

NIntegrate[], Method: Local
Adaptive

Adaptive subdivisions
based on local error

estimates

0.67 0

NIntegrate[], Method:
LocalAdaptive, Rule:

CartesianRule
Uses Cartesian product of

rules for the quadrature rule

0.69687 0

NIntegrate[], Method:
LocalAdaptive, Rule:
ClenshawCurtisRule

Uses Clenshaw-Curtis rule
for the quadrature rule

11.0053 0

NIntegrate[], Method:
LocalAdaptive, Rule:
GaussKronrodRule

Uses the Kronrod extension
of Gaussian quadrature

0.67219 0

11

NIntegrate[], Method:
LocalAdaptive, Rule:
LobattoKronrodRule

Uses the Kronrod extension
of Gauss-Lobatto

quadrature

0.66141 0

NIntegrate[], Method:
LocalAdaptive, Rule:

NewtonCotesRule
Uses the Newton-Cotes rule

to approximate

17.218 0

NIntegrate[], Method:
LocalAdaptive, Rule:

TrapezoidalRule
Uniform points in one

dimension

>15 min n/a

NIntegrate[], Method:
DoubleExponential

Uses the Double
Exponential (Tanh-Sinh)

quadrature rule

21.8628 0

NIntegrate[], Method:
MonteCarlo

Uses Monte Carlo
integration

0.12469 0.2282

NIntegrate[], Method:
AdaptiveMonteCarlo

Uses adaptive Monte Carlo
integration

0.26437 0.0789

NIntegrate[], Method:
QuasiMonteCarlo

Uses quasi-Monte Carlo
integration

0.29078 0.0009

NIntegrate[], Method:
AdaptiveQuasiMonteCarlo

Uses adaptive quasi-Monte
Carlo integration

2.36906 0.0119

QNG – Implementation 1 GSL non-adaptive solver 0.03203 0
QAG – Implementation 1 GSL adaptive solver 0.02453 0

QAGS – Implementation 1 GSL adaptive solver for
singularities

0.06718 0

QNG – Implementation 2 GSL non-adaptive solver
0.218

0.0001

QAG – Implementation 2 GSL adaptive solver
0.109

0.0001

QAGS – Implementation 2 GSL adaptive solver for
singularities 0.218

0.0001

NOTE: n/a in Total Time means the integral was only evaluated once. n/a in Result means no result
was returned

Table 3. Results of testing Genz Gaussian function for GSL solvers and Mathematica’s methods

Method Description Time/Integral
(s)

Accuracy
(Returned-

Actual)

NIntegrate[]
Mathematica's default,

adaptive numerical
integrator

0.40688 ~0

N[Integrate[]]
Evaluates analytically as

far as possible, then
numerically what remains

0.23516 ~0

12

NIntegrate[], Method:
GlobalAdaptive

Adaptive subdivisions
based on global error

estimates
0.40343 ~0

NIntegrate[], Method:
GlobalAdaptive, Rule:

CartesianRule

Uses Cartesian product of
rules for the quadrature

rule
1.26578 ~0

NIntegrate[], Method:
GlobalAdaptive, Rule:
ClenshawCurtisRule

Uses Clenshaw-Curtis rule
for the quadrature rule 9.875 ~0

NIntegrate[], Method:
GlobalAdaptive, Rule:

GaussKronrodRule

Uses the Kronrod
extension of Gaussian

quadrature
1.406 ~0

NIntegrate[], Method:
GlobalAdaptive, Rule:
LobattoKronrodRule

Uses the Kronrod
extension of Gauss-
Lobatto quadrature

1.359 ~0

NIntegrate[], Method:
GlobalAdaptive, Rule:

NewtonCotesRule
Uses the Newton-Cotes

rule to approximate 940.297 ~0

NIntegrate[], Method:
GlobalAdaptive, Rule:

TrapezoidalRule
Uniform points in one

dimension >15 min n/a

NIntegrate[], Method:
Local Adaptive

Adaptive subdivisions
based on local error

estimates
0.09297 0.00002

NIntegrate[], Method:
LocalAdaptive, Rule:

CartesianRule

Uses Cartesian product of
rules for the quadrature

rule
1.703 ~0

NIntegrate[], Method:
LocalAdaptive, Rule:
ClenshawCurtisRule

Uses Clenshaw-Curtis rule
for the quadrature rule 8.812 ~0

NIntegrate[], Method:
LocalAdaptive, Rule:
GaussKronrodRule

Uses the Kronrod
extension of Gaussian

quadrature
1.703 ~0

NIntegrate[], Method:
LocalAdaptive, Rule:
LobattoKronrodRule

Uses the Kronrod
extension of Gauss-
Lobatto quadrature

0.76907 ~0

NIntegrate[], Method:
LocalAdaptive, Rule:

NewtonCotesRule
Uses the Newton-Cotes

rule to approximate 14.188 ~0

NIntegrate[], Method:
LocalAdaptive, Rule:

TrapezoidalRule
Uniform points in one

dimension 234.406 ~0

13

NIntegrate[], Method:
DoubleExponential

Uses the Double
Exponential (Tanh-Sinh)

quadrature rule
14.782 ~0

NIntegrate[], Method:
MonteCarlo

Uses Monte Carlo
integration 0.06641 0.12253

NIntegrate[], Method:
AdaptiveMonteCarlo

Uses adaptive Monte
Carlo integration 0.06313 0.03146

NIntegrate[], Method:
QuasiMonteCarlo

Uses quasi-Monte Carlo
integration 0.18906 0.00785

NIntegrate[], Method:
AdaptiveQuasiMonteCarlo

Uses adaptive quasi-
Monte Carlo integration 0.22172 0.01324

QNG – Implementation 1 GSL non-adaptive solver 0.03516 ~0
QAG – Implementation 1 GSL adaptive solver 1.05031 ~0

QAGS – Implementation 1 GSL adaptive solver for
singularities 0.06969 ~0

QNG – Implementation 2 GSL non-adaptive solver 0.187 ~0.022

QAG – Implementation 2 GSL adaptive solver 2.937 ~0.022

QAGS – Implementation 2 GSL adaptive solver for
singularities 0.187 ~0.022

NOTE: n/a in Total Time means the integral was only evaluated once. n/a in Result means no result
was returned. Error is approximate due to the fact that the solution must be truncated at some value.

Table 4. Results of testing Genz Product Peak function for GSL solvers and Mathematica’s
methods

Method Description Time/Integral
(s)

Accuracy
(Returned-

Actual)

NIntegrate[]
Mathematica's

default, adaptive
numerical integrator

1.89625 None returned

N[Integrate[]]
Evaluates analytically

as far as possible,
then numerically what

remains
0.32813 None returned

NIntegrate[], Method:
GlobalAdaptive

Adaptive subdivisions
based on global error

estimates
1.88782 None returned

NIntegrate[], Method:
GlobalAdaptive, Rule:

CartesianRule

Uses Cartesian
product of rules for
the quadrature rule

70.9467 None returned

NIntegrate[], Method:
GlobalAdaptive, Rule:
ClenshawCurtisRule

Uses Clenshaw-Curtis
rule for the quadrature

rule
38.953 None returned

14

NIntegrate[], Method:
GlobalAdaptive, Rule:

GaussKronrodRule

Uses the Kronrod
extension of Gaussian

quadrature
58.719 None returned

NIntegrate[], Method:
GlobalAdaptive, Rule:
LobattoKronrodRule

Uses the Kronrod
extension of Gauss-
Lobatto quadrature

38.078 None returned

NIntegrate[], Method:
GlobalAdaptive, Rule:

NewtonCotesRule

Uses the Newton-
Cotes rule to
approximate

4.547 None returned

NIntegrate[], Method:
GlobalAdaptive, Rule:

TrapezoidalRule
Uniform points in one

dimension 39.39 None returned

NIntegrate[], Method:
Local Adaptive

Adaptive subdivisions
based on local error

estimates
>15 min n/a

NIntegrate[], Method:
LocalAdaptive, Rule:

CartesianRule

Uses Cartesian
product of rules for
the quadrature rule

>15 min n/a

NIntegrate[], Method:
LocalAdaptive, Rule:
ClenshawCurtisRule

Uses Clenshaw-Curtis
rule for the quadrature

rule
>15 min n/a

NIntegrate[], Method:
LocalAdaptive, Rule:
GaussKronrodRule

Uses the Kronrod
extension of Gaussian

quadrature
>15 min n/a

NIntegrate[], Method:
LocalAdaptive, Rule:
LobattoKronrodRule

Uses the Kronrod
extension of Gauss-
Lobatto quadrature

>15 min n/a

NIntegrate[], Method:
LocalAdaptive, Rule:

NewtonCotesRule

Uses the Newton-
Cotes rule to
approximate

>15 min n/a

NIntegrate[], Method:
LocalAdaptive, Rule:

TrapezoidalRule
Uniform points in one

dimension >15 min n/a

NIntegrate[], Method:
DoubleExponential

Uses the Double
Exponential (Tanh-

Sinh) quadrature rule
0.02687 None returned

NIntegrate[], Method:
MonteCarlo

Uses Monte Carlo
integration 0.18453 O(1011)

NIntegrate[], Method:
AdaptiveMonteCarlo

Uses adaptive Monte
Carlo integration 0.16359 O(1025)

NIntegrate[], Method:
QuasiMonteCarlo

Uses quasi-Monte
Carlo integration 0.35797 O(1014)

15

NIntegrate[], Method:
AdaptiveQuasiMonteCarlo

Uses adaptive quasi-
Monte Carlo
integration

0.09266 O(1018)

QNG – Implementation 1 GSL non-adaptive
solver n/a n/a

QAG – Implementation 1 GSL adaptive solver n/a n/a

QAGS – Implementation 1 GSL adaptive solver
for singularities n/a n/a

QNG – Implementation 2 GSL non-adaptive
solver n/a n/a

QAG – Implementation 2 GSL adaptive solver n/a n/a

QAGS – Implementation 2 GSL adaptive solver
for singularities n/a n/a

NOTE: N/A in Total Time means the integral was only evaluated once. N/A in Result and
Time/Integral means no result was returned.

Figure 6. Method vs. Time/Integral plots of the Genz Oscillatory function

16

Figure 7. Method vs. Time/Integral for Genz Gaussian function

5.3 SERIAL TEST ON EQUATION (1)
 The example integrand (R defined in (2), S defined in (3)-(10)) at the point

= (-1,-1,-1,0) was evaluated using Implementation 1 and Implementation 2 for
each of QNG, QAG, and QAGS. The results can be found in Table 5. Accuracy is defined as the
difference between the returned value and the true value.

Table 5. Results of testing equation (1)
Implementation	
 1	
 Time	
 (s)	
 Returned	
 Accuracy	

QNG	
 Error:	
 failed	
 to	
 reach	
 tolerance	
 with	
 highest-­‐order	
 rule	
 	
 	

QAG	
 13290.843	
 29.9458	
 ~0.00116	

QAGS	
 46920.328	
 29.9458	
 ~0.00116	

Implementation	
 2	
 Time	
 (s)	
 Returned	
 Accuracy	

QNG	
 Error:	
 failed	
 to	
 reach	
 tolerance	
 with	
 highest-­‐order	
 rule	
 	
 	

QAG	
 7902.8	
 29.9458	
 ~0.00116	

QAGS	
 31401.5	
 29.9458	
 ~0.00116	

17

It can be seen that neither version of QNG was capable of solving the final integrand. The fastest
evaluation, by Implementation 2 of QAG, took more than two hours. All four tests returning a result
returned the same result: 29.9458. The extreme time required for solving this integrand can be
attributed to two things. First, quadrature methods perform best on sufficiently smooth functions in
low dimensions (three dimensions or less). This integrand is not sufficiently smooth for these
methods and the dimension of the problem is larger than ideal. Second, the method of recursively
calling one-dimensional integration four times can be computationally expensive. In particular, the
weights and abscissas must be generated each time integration is performed.

6. CONCLUSIONS AND FUTURE WORK

 To evaluate all 1012 integrals for the full problem would take more than 225 million years using
the fastest method, Implementation 2 of QAG (over two hours to solve the integral at one point).
This is too slow to be useful. Especially by comparison to the Monte Carlo methods implemented by
others: evaluating the final integrand at the point = (-1,-1,-1,0) took less than a
second using a similarly implemented quasi-Monte Carlo method. Since parallelization of the code
was to be done by parallelizing over data points, it is not a worthwhile exercise to parallelize any of
the quadrature methods currently implemented.

 Future work on quadrature methods should explore alternative implementations. Recall, the
method implemented here was to call one-dimensional solvers recursively four times. While this is an
intuitive first method (it mimics the order of analytical integration by hand), it is clearly not
sufficiently efficient. An alternative method is to explore generating four-dimensional quadrature
rules. A simple four-dimensional rule would be to take either the Cartesian or tensor product of one-
dimensional rules (see [8]). The four-dimensional rule would then be summed once to approximate
the integral, as compared to the previous method of summing a one-dimensional rule four times.
There is open-source code available that can serve as a starting point in such a construction (see
Appendix C). However, it will require significant modification to solve arbitrary integrals efficiently.

18

7. REFERENCES

[1] P. Bratley and B. Fox, “Algorithm 659: Implementing Sobol’s Quasirandom Sequence

Generator,” ACM Transactions on Mathematical Software, vol. 14, no. 1, Mar. 1988.

[2] J. Bull and T. Freeman, Parallel algorithms for multi-dimensional integration. Parallel and
Distributed Computing Practices, vol. 1, no. 1, pp. 89-102, 1998.

[3] J. Burkardt, QUADRULE. [Online source code] Available:
http://people.sc.fsu.edu/~jburkardt/cpp_src/cpp_src.html

[4] J. Burkardt, TESTPACK. [Online source code] Available:
http://people.sc.fsu.edu/~jburkardt/cpp_src/cpp_src.html

[5] B. Flannery, W. Press, S. Teukolsky, and W. Vetterling, Numerical Recipes in C. New York:

Cambridge University Press, 1992. [E-book] Available: http://www.nrbook.com/a/bookcpdf.php.

[6] M. Galassi et al, GNU Scientific Library Reference Manual. 3rd Ed. [E-book] Available:

http://www.gnu.org/software/gsl/

[7] T. Gerstner and M. Griebel, “Numerical Integration Using Sparse Grids,” Numerical Algorithms,

vol. 18, no. 3-4, Jan. 1998.

[8] C. Lemieux, Monte Carlo and Quasi-Monte Carlo Sampling, 1st ed. New York: Addison Springer

New York, 2009. [E-book] Available: Google Books e-book.

[9] R. Schürer, “Parallel High-Dimensional Integration: Quasi-Monte Carlo vs. Adaptive Cubature

Rules” in Lecture Notes in Computer Science. Heidelberg: Springer Berlin, 2001.
 [E-book] Available: SpringerLink e-book.

[10] Wolfram Research, Inc., Mathematica, Version 7.0. Champaign, IL: 2008.

19

APPENDIX A. ENVIRONMENT SETUP

Eclipse
The Eclipse Galileo C/C++ IDE version 3.5 for a 32-bit Windows machine was downloaded

from
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/helios/R/e
clipse-cpp-helios-win32.zip. The automatic download process went smoothly and the program was
installed at C:\Users\8y7\Documents\eclipse-cpp-galileo-SR2-win32. Eclipse requires the download
of a complier (either Cygwin or MinGW compilers are recommended) in order to work.

Following the recommendations of the “Before you begin” section of the Eclipse C/C++
Development User Guide (under the help section of Eclipse), the MinGW compiler and gdb debugger
were installed. Specifically, MinGW version 5.1.6 was downloaded as MinGW-5.1.6.exe from
http://sourceforge.net/projects/mingw/files/, following the links from the “Before you begin” guide. It
was downloaded to C:\MinGW.
 The only possible dependencies clear from the instructions in the “Before you begin” guide were
the gdb debugger and MSYS. Hence gdb-6.6.tar.bz2 was downloaded from
http://sourceforge.net/mingw/gdb-6.6.tar.bz2, also following the links from the “Before you begin”
guide. Following the recommendation of the guide to extract the contents of the debugger to the same
location where MinGW was installed, the contents were extracted to C:\MinGW under the folder
“debugger” (C:\MinGW\debugger). To install MSYS, msys-1.0.10.exe was downloaded from
http://sourceforge.net/projects/mingw/files/MSYS/BaseSystem/msys-1.0.10/MSYS-
1.0.10.exe/download. The msys-1.0.10.exe was run and MSYS was installed in C:\msys\1.0. The
installation auto-suggested MinGW as location of program's shortcuts and this option was selected.
 To use the solvers from the GSL, the GSL must be properly linked to Eclipse. Unfortunately,
there does not appear to be any comprehensive or formal instructions for doing this available.
Instructions from
http://www.eclipse.org/forums/index.php?t=msg&goto=231303&S=e12b33cc44ec8098c3abf3d5a3bc
9056#msg_231303, http://www.eclipse.org/forums/index.php?t=msg&goto=497917& and
http://whatwouldnickdo.com/wordpress/328/eclipse-cdt-and-linux-libraries/ are being used to link the
library.
 Specifically, gsl-1.11.tar.gz was downloaded from ftp://mirrors.usc.edu/pub/gnu/gsl/ (a mirror
from the GSL website) and its files were extracted to C:\Users\8y7\workspace. In Eclipse,
"C:\Users\8y7\workspace\gsl-1.11\include"(quotes included) was added to Project Properties ->
C/C++ General -> Paths and Symbols -> Include for both Gnu C and Gnu C++ languages. GSL was
added to Project Properties -> C/C++ Build -> Settings -> Tool Settings -> MinGW C++ Linker ->
Libraries -> Libraries (-l). And "C:\Users\8y7\workspace\gsl-1.11" (quotes included) was added to
Project Properties -> C/C++ Build -> Settings -> Tool Settings -> MinGW C++ Linker -> Libraries
-> Library Search Path (-L). This, however, presents errors when trying to run a sample program that
calls GSL functions (such as the one from the GSL manual available at
http://www.gnu.org/software/gsl/manual/html_node/Numerical-integration-examples.html).
 Therefore, Eclipse was used primarily as a text editor. Cygwin was used for compiling and
running programs since it includes the GSL.
Cygwin
 Cygwin was downloaded as an alternative to linking the GSL to Eclipse. Following the link from
the Cygwin website http://www.cygwin.com/, setup.exe was downloaded and run. The setup is fairly
automated and files are installed at C:/cygwin. The mirror ftp://ftp.gtlib.gatech.edu was chosen. The
“Install” option was chosen for all files (rather than the “Default”). Any dependencies the installer
recognized were fixed automatically.
 Testing the same GSL example program used in Eclipse (available at
http://www.gnu.org/software/gsl/manual/html_node/Numerical-integration-examples.html) resulted
in a successful run with results that match those given by the GSL.

20

The GSL was installed and compiled on the Oak Ridge Institutional Cluster (OIC) by logging
on to the OIC and using the commands:
scp gsl-1.11.tar.gs userid@bes-inter.ornl.gov:~/
gunzip gsl-1.11.tar.gz
tar –xvf gsl-1.11.tar
mkdir libgsl
./configure --prefix=/home/PATH_WHERE_GSL_INSTALLED
make
make check
make install
make clean
No errors were returned during this process.
Using the commands:

export LD_LIBRARY_PATH=/home/PATH_WHERE_GSL_INSTALLED/lib:
$LD_LIBRARY_PATH

g++ main.cpp -o main -I/home/ PATH_WHERE_GSL_INSTALLED/include -L/home/
PATH_WHERE_GSL_INSTALLED/lib –lgsl -lgslcblas –lm

successfully runs a program main.cpp on the OIC using the GSL.

21

APPENDIX B. LIST OF LINKS TO RESOURCES USED

1. Website to download Eclipse:

http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/he
lios/R/eclipse-cpp-helios-win32.zip

2. Website to download MinGW compiler: http://sourceforge.net/projects/mingw/files/
3. Website to download gdb debugger: http://sourceforge.net/mingw/gdb-6.6.tar.bz2
4. Website to download MSYS:

http://sourceforge.net/projects/mingw/files/MSYS/BaseSystem/msys-1.0.10/MSYS-
1.0.10.exe/download

5. Website 1 for instructions linking the GSL to Eclipse (unsuccessful):
http://www.eclipse.org/forums/index.php?t=msg&goto=231303&S=e12b33cc44ec8098c3abf
3d5a3bc9056#msg_231303

6. Website 2 for instructions linking the GSL to Eclipse (unsuccessful):
http://www.eclipse.org/forums/index.php?t=msg&goto=497917&

7. Website 3 for instructions linking the GSL to Eclipse (unsuccessful):
http://whatwouldnickdo.com/wordpress/328/eclipse-cdt-and-linux-libraries/

8. Mirror GSL was downloaded from: ftp://mirrors.usc.edu/pub/gnu/gsl/
9. Example used to test GSL installation:

http://www.gnu.org/software/gsl/manual/html_node/Numerical-integration-examples.html
10. Cygwin website setup.exe was downloaded from: http://www.cygwin.com/
11. Mirror Cygwin was downloaded from: ftp://ftp.gtlib.gatech.edu
12. Location of quadrule collection of code:

http://people.sc.fsu.edu/~jburkardt/cpp_src/quadrule/quadrule.html.
13. Tutorial on passing pointers to functions: http://www.cplusplus.com/doc/tutorial/pointers/

22

APPENDIX C. REVIEW OF QUADRULE – A COLLECTION OF CODE USEFUL FOR
FUTURE RESEARCH

Collection of code available at http://people.sc.fsu.edu/~jburkardt/cpp_src/quadrule/quadrule.html.
The variety of code provides excellent examples. The general organization of the available programs
also raises an interesting idea that may cut down on computing time: to have the weights and
abscissas pre-computed and read in from a text file.
Some of the programs examined in detail were:

• quad_mpi – a parallelized example of a one-dimensional numerical integration
• quadrature_test – “a program which reads the definition of a multidimensional quadrature

rule from three files, applies the rule to a number of test integrals, and prints the results.”
• quadrule –“a library which defines quadrature rules for approximating integrals;” i.e., have to

use both quadrule and quadrature_test to evaluate an integral, also have to pick a rule
• product_rule – “a C++ program which creates a multidimensional quadrature rule by using a

product of one-dimensional quadrature rules.”
• quadrature_rules – “a dataset directory which contains examples of quadrature rules.”
• sparse_grid_gp – “a dataset directory which contains examples of sparse grids, using the idea

of a level to control the number of points, and assigning point locations using the Gauss
Patterson rule.”

A variety of other quadrature rules are implemented in the same source. Unfortunately, all of the
implementations are non-adaptive. So to develop an adaptive solver using one four-dimensional
quadrature rule (as in [8]), rather than recursively calling four one-dimensional rules, it would be
necessary to combine elements from a variety of the code available. For example, sparse_grid_gp
could be used to generate the one-dimensional rule used by product_rule to generate the four-
dimensional rule. Then quadrature_test could be used as a basis to develop a solver using the four-
dimensional rule. Note that it would have to be made adaptive. To parallelize, quad_mpi would need
to be expanded to handle four-dimensional integrands and the four-dimensional adaptive solver.

23

24

ORNL/TM-2008/00

INTERNAL DISTRIBUTION

1. Abigail Snyder 8.
2–4. Dr. Yu (Cathy) Jiao 9–10.

5. 11. ORNL Office of Technical Information
6. and Classification
7.

EXTERNAL DISTRIBUTION

 None permitted until completion and review.

