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ABSTRACT 
An abdominal aortic aneurysm is a problem in which the wall of 
the artery that supplies blood to the abdomen and lower 
extremities expands under pressure or balloons outward.  Patients 
must undergo surgery to repair such aneurysm, and there is 
currently no known indicator of success or failure from this 
surgery.  Our work uses a genetic algorithm to analyze radiology 
reports from these patients to look for common patterns in the 
language used as well as common features of both successful and 
unsuccessful surgieries.  The results of the genetic algorithm show 
that patients with complications or unusual characteristics can be 
identified from a set of radiology reports without the use of search 
keywords, clustering, categorization, or ontology. This allows 
medical researchers to search and identify interesting patient 
records without the need for explicitly defining what “interesting” 
patient records are. 

Categories and Subject Descriptors 
I.2.6 [Learning]: analogies, concept learning, connectionism and 
neural nets, induction, knowledge acquisition, language 
acquisition, parameter learning. 

H.3.3 [Information Search and Retrieval]: clustering, 
information filtering, query formulation, relevance feedback, 
retrieval models, search process, selection process. 

General Terms 
Algorithms, Design 

Keywords 
Genetic algorithm, abdominal aortic aneurysm, medical 
knowledge discovery, natural language processing 

1. INTRODUCTION 
Genetic algorithms have been used in medical applications to 
characterize features and findings identified in reports. Previous 

work has been done on the application of such algorithms to 
mammography reports to classify the data [6][7], but it is 
important to test these concepts in broader applications to 
determine scalability and appropriateness across a spectrum of 
patient data. Ultimately, the use of GAs could become standard 
for data analytics in large medical data warehouses.  To test the 
hypotheses that a GA developed for mammography could be used 
with new data types, it has been extended for use with patient’s 
having Abdominal Aortic Aneurysms (AAAs). 

An AAA is a problem in which the wall of the artery that supplies 
blood to the abdomen and lower extremities expands under 
pressure or balloons outward. In most cases, there are no advance 
symptoms, and patients only learn they have an aneurysm when 
they are admitted to the hospital for other problems for which an 
abdominal computed tomography (CT) scan is ordered. 
Aneurysms in danger of rupture are repaired surgically by the 
insertion of a graph or stent.  Then, the patient is followed for 
several years to ensure there are no further problems such as 
secondary ruptures, slippage or leakage (endoleaks). 
Characterization and pattern analysis of these secondary problems 
has never been done using automated tools for extraction, 
comparison, or temporal comparison. Generally, the surgeon 
relies on the CT scans, radiology reports, and states of the 
patient’s health during routine monitoring to assess if a repair is 
needed, but in most cases, these problems are only detected during 
the follow up scans or visits to the emergency room.  A far more 
effective way to support clinical decision making would be to 
employ tools such as GAs in an integrated learning environment 
to assess all the contents of the radiology reports, operative notes 
and other supporting patient information.  This environment 
would allow for more complete characterization of AAA features, 
changes, types of aneurysm, and assessment of patient care.  For 
example, there are four types of leaks that may occur after the 
repair of an AAA.  One of these is life threatening and requires 
immediate surgery.  Another, the most common type, frequently 
repairs itself or goes away over time, and may not need surgical 
intervention. A third type deals with the type of graphs, and the 
fourth is rarely seen.  If surgeons could predict, through analysis 
of the reports and images available to them when a leak or rupture 
is likely to occur and the type of leak, they could be in a better 
position to help their patients. The challenge lies in developing or 
applying tools that can accurately assess and organize the 
language of the patient reports. 
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Currently, there is no standard ontology for AAA radiology 
reports.  Consequently, the objective of this work is to develop an 
algorithm for learning the features of the language used in AAA 
reports. 

2. DATA 
The data used in this research consists of 20 AAA patient records.  
There are a total of 111 reports consisting of 87 radiology reports 
and 24 operative notes, which are approximately 4 radiology 
reports and 1 operative note per patient.  Patients undergoing 
AAA repair will have a pre-operative CT scan to visualize and 
describe the patient’s AAA.  The patient then undergoes surgery 
to repair the AAA.  Finally, the patient has several follow-up CT 
scans to check the progress of the repair.  If the repair does not 
work, then additional surgery is performed along with additional 
follow-up scans. 

2.1 Characteristics of the Data 
As described in [6][7], mammography radiology reports are 
labeled as being either normal or suspicious.  With the use of the 
BI-RADS system, these reports were further categorized 
according to the patient’s condition [1].  As a result, the language 
of the reports has unique characteristics according to their 
classification of either normal or suspicious.  Normal reports 
tended to be shorter in length with less variability in the language 
used.  Suspicious reports tended to be longer with wider 
variability in the language because they describe details of 
abnormalities in the patient.  Figure 1 shows a multi-dimensional 
scaling of mammography reports using cosine distance and a TF-
IDF vector representation [12].  As can be seen, the normal 
reports tend to cluster while the suspicious reports are widely 
scattered with little clustering. 

 
Figure 1.  Multi-dimensional scaling of mammogram 
radiology reports 

 
Figure 2.  Multi-dimensional scaling of AAA radiology reports 
In contrast, the AAA radiology reports do not have labels of 
normal or suspicious.  The reports simply contain the observations 
of the radiologist about the patient.  Figure 2 shows a multi-
dimensional scaling of the AAA reports.  As can be seen, the 
reports are widely scattered with a few reports clustering together. 

The reports for each patient were also combined into a single 
patient record.  There are, on average, 4 reports per patient record.  
Figure 3 shows a multi-dimensional scaling of the 20 patient 
records.  As can be seen, the patients are widely scattered with a 
few patients clustering together. 

 
Figure 3.  Multi-dimensional scaling of AAA patient records 
As will be discussed in a later section, the results of the multi-
dimensional scaling are due to the characteristics of the language 
used to describe the AAA patients.  While the AAA reports do not 
have a particular labeling scheme like mammography reports, 
they do have similar characteristics in that abnormalities in 
patients will result in reports that are both longer and contain 
wider variation in the language used.  Patients with no 
abnormalities have shorter reports with less variability in the 
language. 

The main problem of trying to identifying and analyzing reports 
describing abnormalities without a predefined labeling scheme or 
ontology lies in the language that is used in reports. Much like the 



mammography reports discussed in [6], AAA reports describing 
abnormalities tend to have a richer vocabulary than normal reports 
(i.e., without abnormalities in the patient).  In addition, normal 
reports tend to have a higher number of “negation” phrases.  
These are phrases that begin with the word “no” such as in the 
phrase “no evidence of endograft leak.”  Consider the phrases 
shown in Table 1 and Table 2.  These are the negation phrases that 
generally occur in normal reports and the ones shown here are 
samples of the variations that have been found. 

Table 1.  Example phrases using "no" and "leak" 

no evidence of endograft leak 
no obvious leak 

no evidence of graft leak 
no endovascular leak 
no evidence of leak 

no endovascular leak on delayed imaging 
patent with no evidence of graft leak 

no evidence to suggest endovascular leak 
 

Table 2.  Example phrases using "no" and "fluid" 

no pelvic fluid 
no free pelvic fluid 

no free fluid in the pelvis 
no significant pelvic free fluid 

no free fluid 
no pelvic free fluid 
no free air free fluid 

 

In contrast to the mammography reports discussed in [6], the 
abnormal AAA reports do not have a consistent set of terms or 
phrases to describe abnormalities.  This is due to the higher 
variety of abnormalities that can be seen in AAA scans as 
opposed to mammography scans.  This characteristics causes the 
analysis of AAA reports to be more difficult than mammography 
reports. 

Considering the language variations shown previously, the task of 
retrieving those reports that represent abnormalities is daunting.  
The variations of terms and syntax create a combinatorial 
explosion while, semantically, these combinations tend to mean 
the same thing.  Consequently, the traditional vector space model 
based on individual terms does not adequately capture the 
semantics used in medical documents.  The use of phrases does 
adequately solve the issue of capturing the semantics, as there are 
numerous phrase variations to describe the same conditions of 
patients. 

To address this challenge of capturing the semantics of the 
radiology reports, this work relies on skip grams to represent 
common phrase patterns.  S-grams are word pairs in their 
respective sentence order that allow for arbitrary gaps between the 
words [2][3][8].  The s-grams for Table 1 are the words “no” and 
“leak.”  This s-gram uniquely identifies a particular semantic in 
the language of AAA reports and enables the identification of all 
possible variations of such phrases.  Higher-level patterns may 
then be formed from these s-grams to help create ontology. 

Consequently, the goal of this work is to extend and apply the 
Maximum Variation Sampling Genetic Algorithm (MVS-GA) as 
described in [6][7] to the AAA radiology reports, and to assess its 

performance in identifying abnormalities in paitents and 
characterize the language in this sub-domain of radiology reports. 

3. APPROACH 
As discussed in the previous section and in [6], radiology reports 
exhibit two characteristics.  First, reports describing abnormalities 
tend to be longer and have a wider variation in the language that is 
used.  Consequently, these reports tend not to cluster with other 
reports.  The second characteristic is that reports where there are 
no abnormalities use more negation phrases than abnormal 
reports.  It is these two characteristics that we seek to exploit in 
this approach. 

3.1 Learning from Maximum Variation 
Sampling 
The genetic algorithm used in this work is an extension of the one 
described in [6][7]. The genetic algorithm is used to implement 
maximum variation sampling, which helps identify critical and 
distinct features of the data set. 

Maximum variation sampling is a nonprobability-based sampling.  
This form of sampling is based on purposeful selection, rather 
than random selection.  The advantage of this form of sampling is 
that it allows a doctor or radiologist to look at data that may not 
otherwise be visible via the random selection process.  Since 
abnormal mammography reports are not as common as normal 
ones, random sampling would make it difficult to find them.  
Within nonprobability-based sampling, there are several 
categories of sampling [5], one of which is maximum variation 
sampling (MVS) [5].  This particular sampling method seeks to 
identify a particular sample of data that will represent the diverse 
data points in a data set.  In this case, the diverse data points will 
represent abnormal mammograms.  According to [5], “This 
strategy for purposeful sampling aims at capturing and describing 
the central themes or principle outcomes that cut across a great 
deal of [data] variation.”  The MVS is naturally implemented as a 
genetic algorithm (MVS-GA). 

Before applying a GA to the analysis of mammography reports, 
the reports must be prepared using standard information retrieval 
techniques.  First, reports are processed by removing stop words 
and applying the Porter stemming algorithm [4][9][10].  Once this 
has been done, the articles are then transformed into a vector-
space model (VSM) [11][12].  In a VSM, a frequency vector of 
word and phrase occurrences within each report can represent 
each report.  Once vector-space models have been created, the GA 
can then be applied. 

Two of the most critical components of implementing a GA are 
the encoding of the problem domain into the GA population and 
the fitness function to be used for evaluating individuals in the 
population.  To encode the data for this particular problem 
domain, each individual in the population represents one sample 
of size N.  Each individual consists of N genes where each gene 
represents one radiology report (each report is given a unique 
numeric identifier) in the sample.  For example, if the sample size 
were 10, each individual would represent one possible sample and 
consist of 10 genes that represent 10 different reports.  This 
representation is shown in the following figure. 



 
Figure 4.  Genetic representation of each individual 

The fitness function evaluates each individual according to some 
predefined set of constraints or goals.  In this particular 
application, the goal for the fitness function was to achieve a 
sample that represents the maximum variation of the data set 
without applying clustering techniques or without prior 
knowledge of the population categories.  To measure the variation 
(or diversity) of our samples, the summation of the similarity 
between the vector-space models of each document (or gene) in 
the sample is calculated as shown in the following equation. 

In an effort to effectively characterize the phrase patterns of the 
AAA radiology reports, it is necessary to examine reports that are 
longer in length, so that more language can be examined for 
patterns.  In addition, abnormal reports tend to be longer in length 
than normal reports since the radiologist is describing the 
abnormalities in more detail.  To drive the GA towards longer 
reports and avoid duplicate reports, the fitness function of the 
MVS-GA incorporates penalty functions as shown in equations 1 
– 4. 

€ 

Fit(i) = α j + βk + χ jk + Sim (Gene(i, j),Gene(i,k))
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Equation 1.  Revised MVS-GA Fitness Function 
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Equation 2.  Penalty factor for document j 
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Equation 3.  Penalty factor for document k 
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Equation 4.  Penalty factor for documents j and k 
In Equation 1, the Sim function calculates the similarity between 
the vector space models of gene j and k of the individual i.  This 
similarity value ranges between 0 and 1 with 1 indicating that the 
two reports are identical and 0 indicating that they are completely 
different in terms of the words used in that report.  Therefore, in 
order to find a sample with the maximum variation, Equation 1 
must be minimized (i.e., lower fitness values are better).  In this 
fitness function, there will be (N2 – N) / 2 comparisons for each 
sample to be evaluated. 
The penalty functions are incorporated into the fitness function in 
order to penalize individuals in the MVS-GA based on the length 
of the documents they represent. The penalty functions also return 
values that are between 0 and 1, inclusive. As a result of the 
penalty functions, the reports that do not discuss any 
complications or abnormalities tend to be shorter and receive the 
higher penalty values, while lengthy reports describing 

complications will receive the lower penalty values.  In addition, 
this work extends that of [7] by incorporating an additional 
penalty function that penalized for duplicate documents in the 
sample.  The penalty value was arbitrarily chosen, but is 
sufficiently high enough to be a severe penalty. 

After the MVS-GA is executed, the end result is a best sample of 
AAA reports that are as diverse from each other as possible.  
Once this sample is achieved, then phrases are extracted from 
each document in the sample.  For each phrase in the document, s-
grams are extracted.  Next, the s-grams are counted across the 
sample of documents.  S-grams that are common across the 
sample will have higher frequency counts while s-grams with a 
frequency of 1 uniquely identify a particular document in the 
sample. 

4. RESULTS & CONCLUSIONS 
Figure 5 shows the multi-dimensional scaling view of the patients 
that were selected by the MVS-GA.  As expected, some of the 
patients are widely scattered, and the maximum variation 
sampling is designed to find widely scattered data points.  
However, some of the patients are clustered near each other.  The 
reason for this is that they still have several distinct features in 
common, even though the overall content of these reports are very 
different. 

 
Figure 5.  Patients selected by the MVS-GA 

The s-grams discovered by the MVS-GA from the data set are 
shown in Table 3 and Table 4.  Table 3 shows the top negation s-
grams from the best solution obtained.  These negation s-grams 
are commonly used in the normal reports, but may occur in 
abnormal reports.  They represent specific abnormalities that the 
radiologist is looking to find in the patient.  For AAA patients, the 
radiologist is specifically looking to see if the repair of the 
aneurysm is not leaking and that there is no fluid collecting, or 
any other form of complication from the graft that inserted to 
repair the aneurysm.  In addition to observing the AAA repair 
graft, the radiologist may also observe other abnormalities or the 
condition of other organs in the abdomen of the patient.  This is 
the reason for the “no & mass” s-gram. 
 



Table 3.  Top five negation s-grams from best solution 
obtained by MVS-GA 

S-gram Example Phrase 
no & leak no evidence of leak 
no & fluid no pelvic free fluid 

no & suggest no finding to suggest 
no & mass no pancreatic mass 
no & graft no evidence of endovascular graft complication 

 

The s-grams shown in Table 4 are the most common s-grams 
shared by the documents in the best solution obtained.  As 
discussed previous, the MVS-GA searches to find documents that 
are as different from each other as possible.  Consequently, any 
commonality between the documents in the sample is a result of 
the nature of the AAA procedure and patient condition.  The first 
four s-grams in this table are a reflection of that.  These are s-
grams that most of the AAA patients are very likely to have in 
their reports, as they are standard descriptions for the procedures 
of the patients. 

Table 4.  Top five common s-grams across the best solution 
obtained by the MVS-GA 

S-gram Example Phrase 
left & artery left renal artery 

pelvis & iv pelvis after the administration of 142cc of 
omnipaque-300 iv 

ct & abdomen ct imaging of abdomen 
hour & prep 3 hour oral prep 
evidence & 
diverticulitis 

sigmoid diverticulosis without evidence of 
diverticulitis 

 

The last s-gram of Table 4 is particularly interesting.  This s-gram 
does not refer to the AAA procedure, but is specific feature of the 
patients and refers to a condition known as sigmoid diverticulosis. 
Sigmoid diverticulosis is a condition where small pockets form 
along the wall of the colon where there are natural weak points.  
Currently, this condition has no connection to the AAA or any 
complications associated to the repair of AAA.  However, in 
reviewing the results of the MVS-GA as shown in Table 5, it was 
found that patients with graft leaks have this condition.  This 
condition also occurs in patients that do not have leaks or 
complications, but it is not as prevalent as those patients that do.  
Additional data and analysis will be needed to further investigate 
if this characteristic of the patients can be used in any way as a 
distinguishing feature of those patients that are likely to have 
complications after AAA repair. 

Table 5 shows the general characteristics of the patients selected 
by the MVS-GA.  Of these 8 patients, 3 of them had graft leaks, 
while the remaining patients have unusual characteristics that 
were noted by the radiologist. 

One of the most significant aspects of these results is that the 
MVS-GA did not require any specialized ontology or dictionary 
or feedback from a subject matter expert.  In addition, no search 
keywords, clustering, or categorization was needed.  This allows 
medical researchers to search and identify interesting patient 
records without the need for explicitly defining what “interesting” 
patient records are. 

 

Table 5.  Patient characteristics from the best solution 
obtained by the MVS-GA 

Patient Abnormal Characteristics 

2 Leak of the graft that heals on its own, 
sigmoid diverticulosis 

5 Leak of the graft, sigmoid diverticulosis 
6 Leak of the graft, sigmoid diverticulosis 

7 No leak, possible pancreatitis, abnormal 
enhancemen of the common bile duct 

11 No leak, left renal artery stenosis 

12 No leak, renal cysts, sigmoid diverticulosis, 
hepatic steatosis 

13 No leak, suspected ulcer perforation of the 
stomach 

18 No leak, ventral wall hernia, sigmoid 
diverticulosis 

 

5. FUTURE WORK 
While the work described here focuses primarily on the learning 
aspect of mining AAA patient reports, there are many avenues for 
future research.  One area of further research will be a temporal 
analysis of the s-grams across the patient records.  For medical 
treatment of AAA patients, it is necessary to know how the 
patient’s condition changes over time.  The next are of future 
research is to investigate if characteristics such as sigmoid 
diverticulosis can be used as indicators of AAA repair 
complications.  This is particularly important, as there is currently 
no indicator to forecast the success or failure of a patient’s 
recovery from AAA repair. 
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