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Abstract—Detecting and identifying security events to provide
cyber situation awareness has become an increasingly important
task within the network research and development community.
We propose a graph similarity-based approach to event detection
and identification that integrates a number of techniques to
collect time-varying situation information, extract correlations
between event attributes, and characterize and identify security
events. Diverging from the traditional rule- or statistical-based
pattern matching techniques, the proposed mechanism represents
security events in a graphical form of correlation networks and
identifies security events through the computation of graph sim-
ilarity measurements to eliminate the need for constructing user
or system profiles. These technical components take fundamen-
tally different approaches from traditional empirical or statistical
methods and are designed based on rigorous computational
analysis with mathematically proven performance guarantee.
The performance superiority of the proposed mechanism is
demonstrated by extensive simulation and experimental results.
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I. INTRODUCTION

The successful execution of network-based applications

requires a timely, reliable, and accurate flow of information

in cyber space. To ensure the security of data transfer and

processing, cyber space must be safeguarded and protected

against various types of attacks (both stealth and overwhelm-

ing) launched by the adversary or malicious users.

Traditional security mechanisms such as firewalls, antivirus

programs, authentication and authority tools, and virtual pri-

vate networks have been widely deployed to protect computer

network systems against various cyber threats. However, ef-

fective mechanisms that can translate low-level situation in-

formation to high-level human cognition for accurate decision

making and prompt action taking are still missing. As a matter

of fact, system monitoring and event analysis have become

increasingly challenging due to the wide variety, large scope,

frequent occurrence, and substantive complexity of rapidly

evolving attacks. Some new attacks may cause multi-hit dam-

age to the system using very sophisticated techniques and

hence are extremely difficult to be identified using traditional

detection mechanisms.

We define a general term of “security event” to denote ab-

normal behaviors including any type of “intrusion” or “attack”

launched by malicious users to compromise the security of a

specific host or the entire network system, such as a virus

infection/breakout or a distributed denial of service (DDOS)

attack. An event detection or identification method falls into

one of two categories [1]: (i) rule-based (also referred to

as signature-based) approach which uses the “signature” of

an attack to identify a potential attack; and (ii) statistical-

based (also referred to as behavior-based) approach, which

attempts to learn event patterns on particular historical data and

then match future events with the known patterns to identify

abnormalities. The rule-based method may not identify new

attacks since it takes time to get new rules updated, while the

statistical-based method must compare activities to the stored

patterns that model known attacks, unacceptable states, proper

configurations, or system security policies.

We propose a graph similarity-based approach to security

event analysis using inter-attribute correlations. This approach

integrates a number of techniques to collect time-varying situ-

ation information, extract correlation between event attributes

or indicators, construct correlation networks based on Random

Matrix Theory (RMT), and characterize and identify security

events using graph similarity measurements. The correlations

among a set of carefully selected event attributes are ex-

plored to capture the patterns of different events. Diverging

from the traditional rule- or statistical-based pattern matching

techniques, security events in the proposed mechanism are

represented in a graphical form of correlation networks and

identified through the computation of graph similarity mea-

surements to eliminate the need for constructing user or system

profiles, which often involve subjective human judgement and

interpretation. These technical components take fundamentally

different approaches from traditional empirical or statistical

methods and are designed based on rigorous computational

analysis with mathematically proven performance guarantee.

For performance evaluation, in addition to simulations, we set

up a local network testbed where we can launch, monitor and

identify various types of security events. Extensive experimen-

tal results collected from this testbed justify the efficacy of the

proposed technical approaches.

The rest of the paper is organized as follows. Section II de-

scribes the related work. The proposed event analysis approach

is presented in Section III. The simulation and experimental

results are provided in Section IV. Section V concludes our

work.



II. RELATED WORK

It has been the primary interest in cyber security to provide

automated capabilities of detecting intrusions or other abnor-

malities in computer systems, reporting them in useful ways,

removing discovered anomalies, and repairing damage they

may have caused [2].

Security data usually falls into two categories: (i) time-series

data such as firewall or system log files and (ii) static data such

as user and equipment information about the environment [3],

both of which can be spawned from various points in network

segments and host systems. The design and deployment of

sensors at both network and host locations for security data

collection have been extensively studied in the literature [4]–

[6]. In practice, various utilities and tools can be used to

gather security situation information, spanning from operating

system-level commands such as vmstat, ps-ef, etc. to network-

level commercial agent software such as snort and wireshark.

The situation information collected at different levels serves

as the basis for security event detection.

The technology of security event monitoring and detection is

based on observation, experience, and classification of attacks,

vulnerabilities, and countermeasures [7]. Data mining is one of

the most widely used approaches in the literature for event data

analysis [8]–[10]. Thuraisingham provided an overview of data

mining techniques and cyber threats, and discussed several

developments in applying data mining for cyber security anal-

ysis [8]. Chandola et al.provided an overview of the Minnesota

Intrusion Detection System (MINDS), which uses a set of data

mining based algorithms to address different aspects of cyber

security [9]. In [10], Singhal et al.discussed data mining and

data warehousing techniques to improve the performance and

usability of Intrusion Detection Systems (IDSs), which can

support historical data analysis and data summarization.

Correlations, often measured as correlation coefficients be-

tween different physical or logical entities (random variables),

have been the focus of research for decades in many applica-

tions. Pearson product-moment correlation coefficient, one of

the best known correlation coefficients [11], is a measure of

the strength of linear dependence between two variables and

is obtained by dividing the covariance of the two variables

by the product of their standard deviations. RMT has been

successfully applied to the study of behaviors of complex sys-

tems including stock market [12], spectra of large atoms [13],

metal insulator transitions in disorder systems [14], and spectra

of quasiperiodic systems [15]. However, its applicability in

cyber security remains largely unexplored. We hypothesize

that the universal properties of RMT are also applicable to the

sensor data in cyber space and the correlation threshold can be

determined by characterizing the correlation matrix of network

profiles using RMT. Network characterization and comparison

have been studied in various domains, especially biological

and bioinformatics systems. Most studies of biological net-

works compare their connectivity properties to theoretical or

other types of well-studied graphical systems [16], [17]. There

exist a number of approaches to the comparison of biological
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Fig. 1. Framework of the integrated event detection approach.

networks with focus on either the general topological statistics

of subgraphs [18] or the statistical prevalence of different types

of node connection patterns [19]. The network comparison

procedure in [20] is based on the shared-edge ratio.

III. TECHNICAL DETAILS OF THE PROPOSED MECHANISM

We propose a dynamic computational approach to event

detection and identification for cyber security using RMT-

based correlation network construction and similarity-based

graph comparison. The overall framework of the proposed

mechanism is illustrated in Fig. 1.

A. Offline Event Database Construction

We first analyze the historical cyber data of security events

collected by local sensors that are distributed in both networks

and systems. Each event is associated with several attributes

or indicators which can be used to describe and measure the

corresponding event. For example, a virus breakout typically

causes an abrupt increase in the use of CPU cycles or disk

space and the number of opened files on the affected machines

over a certain period, while in a DDOS attack, one typically

sees high bandwidth usage on the gateway router and a large

number of connections originated from different locations but

targeting the same victim machine without legitimate data

exchange.

We use those collected measurements to construct a

database of known events, on which we have a complete

knowledge in priori. Such events could be launched and mon-

itored in a controlled network environment with a specified

start and end time. Local sensors are deployed to collect

the measurements of different attributes or indicators for

those events. Considering the randomness and noise in data

collection, we deploy redundant sensors for each attribute and

collect multiple measurements in different situations or time

periods. We design the following mathematical techniques

to process and analyze the event attribute measurements. A

similar procedure is applied to online event identification and

identification before performing graph similarity comparison.



1) Correlation Network: We construct a correlation net-

work for each event based on Pearson’s correlation coef-

ficients, which calculate the correlations between all pairs

of attributes by transforming the time-series event attribute

measurements into a correlation matrix with each element

calculated as:

ρxy =
n∑xiyi −∑xi ∑yi

√

n∑x2
i − (∑xi)2 ·

√

n∑y2
i − (∑y2

i )
, (1)

where n is the total number of time steps recorded for each

attribute, and ∑xi or ∑yi are the time-series measurements

(vectors) of different attributes for each event. The correlation

matrix captures the relationship between each pair of event

attributes under the current cyber situation from the event

starting time to the latest time step. Since a security event

is constantly evolving, the number of time steps sampled

so far may not be sufficient to cover the entire period of

the event, resulting in incomplete measurement data. Further-

more, the measurement data are generally imperfect due to

the inappropriateness of event attributes selection, inaccurate

measurements, and delay effects. Therefore, the correlation

matrix contains noise or random components that must be

filtered out to reflect the true relationship between each pair

of event attributes.

2) Denoising: It is generally hard to determine an appropri-

ate threshold (cutoff value) to distinguish the true correlation

from the random noise in the obtained correlation matrix due

to the lack of comprehensive and accurate system knowledge

and control. We apply a similar RMT-based procedure in [21]

to our event analysis. Given a Pearson’s correlation matrix, we

construct a series of new correlation matrices using different

cutoff values. For each cutoff value, we set the element value

in the original correlation matrix, who has an absolute value

less than the selected cutoff, to be 0 in the new matrix,

and keep the remain elements unchanged in the new matri-

ces. We calculate the eigenvalues of each correlation matrix

using direct diagonalization of the matrix. Standard spectral

unfolding techniques are applied to have a constant density

of eigenvalues and subsequently the nearest neighbor spacing

distribution, which is employed to describe the fluctuation

of the eigenvalues of the correlation matrix. We use χ2 test

to determine two critical threshold values that define the

transition range from Gaussian Orthogonal Ensembles (GOE)

to Poisson distribution at a certain confidence level, and the

value at which the reference point starts to follow Poisson

distribution is selected as the threshold or cutoff value.

Once the threshold is determined, a correlation network is

constructed from the original correlation matrix by keeping

those correlation coefficients higher than the threshold and

eliminating all others below the threshold. Such a correlation

network is further converted to the graphical representation

of a security event under the current cyber situation. The

graphical representations of security events are stored in the

database for comparison with future detected events. This

process might be done off-line a priori, while time-series

attribute measurements for new events should be collected by

different sensors in real networks in real-time.

B. Online Event Detection and Identification

1) Event Detection: A fundamental issue in most event

detection systems is to determine what value(s) or metric(s)

can be used to subjectively decide whether it is a normal

or abnormal behavior. While situation information is being

continuously collected by sensors at different network and

system locations, most event detection components use certain

preset thresholds to assess the health of cyber space or discern

the legitimacy (normal or abnormal) of the current activity,

which inevitably triggers false positive or false negative (i.e.

false alarms or miss true cases).

We use a hard fusion algorithm with analytically proven

performance guarantee to make a prompt and reliable decision

on the occurrence of an intrusion from a global perspective

based on local votes casted by individual sensors [22]. Each

sensor makes a local threshold-based binary decision on the

occurrence of a security event and sends its decision together

with the raw event attribute measurements to a frontend data

center. The final global decision is reached by integrating

the local binary decisions made by multiple sensors that are

monitoring the same event from different aspects.

2) Event Identification: Many security systems identify at-

tacks by analyzing network traffic flow and looking for known

signatures. The main drawback of such an approach is the

development and implementation of signatures [1]. Moreover,

the type, signature, and effect of cyber threats are continuously

changing over time. Rule-based identification cannot detect

new attacks whose signatures have not been implemented in

the system beforehand.

We apply a similar procedure as described in Section III-A

to construct a correlation network for each detected suspect

event. When a new security event is detected, the correlation

engine is invoked to construct an event attribute correlation

matrix from time-series raw situation measurements collected

by sensors up to the current time step, which is further

converted to a correlation network of event attributes using the

RMT technique. The graphical representation of the current

security event is then compared to those of known security

events stored in the database to identify the type of the current

event based on graph similarity measured by a graph matching

technique, defined as:

s(c,k) = 1
3
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where c and k represents the current and known events,

respectively; Acomm, Acurr, and Aknown represent the set of

common attributes shared by both events, the set of attributes
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Fig. 2. Event identification performance vs. the
number of event attributes in data collection.
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Fig. 3. Event identification performance vs. the
number of time steps in data collection.

that only belong to the current event, and the set of attributes

that only belong to the known event, respectively; w represents

the weight of an attribute; and n represents the number of

edges within an attribute set or across two attribute sets. A

high value of s indicates a low similarity between the current

and known events.

For the accuracy and robustness purposes, we collect mul-

tiple sets of measurements for each controlled event whose

pattern (correlation network) is stored in the known event

database for future comparison with detected events, while

for online event identification, only one set of measurements

are collected in real-time for the current event.

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Results

We conduct two sets of simulations to study the effects of

the number of event attributes and the number of time steps

on the event identification performance, respectively. These

performance measurements provide us with valuable insight

into how the raw data collection process should be conducted

and how the system would respond at various time points

with different numbers of event attributes. Fig. 2 shows that

collecting more time steps of attribute measurements results

in a better performance of event identification, and Fig. 3

indicates that the more attributes of an event are monitored, the

better performance of event identification the system produces.

B. Experimental Settings

We further conduct experiments using two real systems. The

first system is the victim computer with Windows XP Profes-

sional operating system with no updates installed, equipped

with Intel Pentium 4, 2.0 GHz processor, and 1.25 GB RAM.

This computer was used as the receiver end, to which the

attacks are targeted. The second system is the source (attacker)

computer with Windows 7 Home premium operating system

(64-bit), equipped with Intel Core 2 Duo, 2.66 GHz processor,

and 4 GB RAM. This computer is used as the source for

generating attacks. To avoid the spreading of an attack to other

systems in the network, we use an isolated local network to

connect these two computers.

These two computers are connected in a network using Eth-

ernet cables and an Ethernet switch. After the computers are

set up, various attacks from the source computer are launched

to attack the victim computer using the penetrating testing

tool METASPLOIT V3.3. Gaining access to an unauthorized

computer can be a difficult task. However, there are many

simple techniques like phishing attacks and authentication

attacks to accomplish this task. One of the most dangerous

and effective methods now in use is Software Exploitation

attack, which uses the vulnerabilities in a software to launch a

malicious code, also called a payload. Payload is the code that

is executed once vulnerability is triggered. There are different

types of payloads such as uploading/downloading a file and

executing it, adding user accounts, executing commands, and

so on. METASPLOIT provides information about various

vulnerabilities in an operating system or an application and

allows us to execute various payloads on the victim computer1.

To monitor the effects on the victim computer, we use

Performance Monitor, an built-in tool provided by Windows

Operating System. Performance Monitor shows how the at-

tributes related to various performance objects (process, pro-

cessor, cache, physical disk, memory, etc.) change as the time

progresses. Each performance object represents a component

of the victim computer and it has a set of various attributes.

This tool allows us to generate log data for all the attributes

of each performance object for each time step, which in our

case is set to be one second. We monitored the performance

attributes of the victim computer each time when an attack is

launched.

C. Experimental Results

We monitor the total 109 attributes for each real attack

and record 120 time steps of measurements. The performance

parameters related to processors include: (i) C1 Time, i.e.

the percentage of the time the processor spends in C1 low-

power idle state; (ii) C2 Time, i.e. the percentage of time

the processor spends in C2 low-power idle state; (iii) Inter-

rupt Time, i.e. the percentage of time the processor spends

handling hardware interrupts; and (iv) Processor Time, i.e. the

percentage of elapsed time that the processor spends executing

a non-idle thread. The performance parameters related to cache

are as follows: (i) Async Copy Reads per sec, which gives the

frequency of reads from pages of file system cache involving

1This tool can be downloaded from the link
http://www.metasploit.com/framework/download/.
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Fig. 4. The number of correctly identified events
in response to the number of attributes using 120
time steps of measurements.
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Fig. 5. The number of correctly identified events
in response to the number of time steps using all
useful attributes.

copy of data from cache to application’s buffer; (ii) Async

Data Maps per sec, which gives the frequency of an application

using file system to map each page of a file into the file system

cache for reading the page; and (iii) Fast Reads per sec, which

gives the frequency of reads from the file system cache that

bypasses the installed file system and retrieves the data directly

from the system cache.

We test 15 events in total in this experiment. For each event,

we filter the noisy attributes and only keep the useful ones.

We plot the event identification performance of the proposed

system in Figs. 4 and 5. In Fig. 4, we plot the number

of correctly identified events in response to the number of

attributes using 120 time steps of measurements, while in

Fig. 5, we plot the number of correctly identified events in

response to the number of time steps using all useful attributes.

We observe that the event identification performance increases

as more time steps or more attributes are used in sensor data

collection, which is consistent with the observation in the

previous simulation results.

V. CONCLUSION

We investigated a dynamic computational approach to data

analysis and event detection for cyber security, which inte-

grates a number of component techniques including event

detection, correlation computation of event attributes, network

representation of security events, and event identification based

on graph matching and network similarity measurements.

Both the simulation and experimental results demonstrated the

superiority of the proposed approach.

It is of our future interest to investigate new methods to

accurately represent the correlations among event attributes

and measure the similarities between correlation networks.

We will also make extensive performance comparisons with

traditional rule-based pattern matching techniques used in

existing intrusion detection and identification systems and

tools.
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