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 41 

ABSTRACT 42 

In this paper, we present a ROad SEgment-based emission model (ROSE) for transportation Green House Gas 43 

(GHG) emissions estimation. The objective of this study is to provide a framework for quickly estimating 44 

traffic-related GHG emissions and analyzing its spatiotemporal distribution and variation based on real-time 45 

traffic data. The model has carried out a combination of Intelligent Transport System (ITS) technology, 46 

Geographic Information System (GIS) technology, and the International Vehicle Emission Model (IVE). In the 47 

ROSE model, the ITS’ floating car data (FCD) and loop detector data (LDD) are used as the model input. The IVE 48 

model is used for providing microscopic vehicle emission rates; and GIS is not only used as a database exchanger, 49 

but also used as a computation and a visualization tool in the ROSE model. This paper will discuss two 50 

fundamental works conducted in our ROSE model research project: 1) ITS real-time traffic data collection and 51 

geographic-related data unification; and 2) vehicle driving activity generation and road-segment based CO2 52 

emission computation. To demonstrate the effectiveness of the ROSE model, we apply this model in a case study 53 

for estimating the daily CO2 emissions generated from the highway transportation of Beijing, China during the 54 

year 2008. The result shows that the ROSE model can provide micro-level, highly accurate, and real-time GHG 55 

emission for the whole urban area (such as Beijing city).  56 
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 57 

1 INTRODUCTION 58 

Global climate change-induced problems have become major critical threats to life on Earth. Greenhouse Gas 59 

(GHG) emission has been considered as one of the key contributors to the threats. Reducing GHG emissions and 60 

keeping the anthropogenic CO2 emission rate at a reasonable level is a great challenge. In recent years, CO2 61 

emissions from the transportation sector have been given significant attention (IPCC, 2007). It has been estimated 62 

that 23% of the world, 25% of the European, or 33% of the United States total anthropogenic CO2 emissions is 63 

from the transportation sector. Road transportation currently accounts for 74% of total transport CO2 emissions 64 

(IPCC, 2007; Ribeiro et al, 2007; Davis et al., 2005). With the remarkable development of urban economy and 65 

expansion of population, the CO2 emissions from road transportation continue to rise.  66 

Accurate quantitative measurement of urban road traffic CO2 daily emission is critical in making 67 

effective policy to control transportation related CO2 emissions (Carmichael et al., 2008; Escobedo et al., 2008; 68 

Barth et al., 2008). Currently, a considerable amount of on-road vehicle emission models have been developed to 69 

estimate and predict the transportation GHG emissions, at macroscopic, mesoscopic and microscopic levels 70 

(Sharma et al., 2001; Rakha et al., 2003; Abo-Qudais et al., 2005). However, when applying such models in the 71 

real world, one of the sources of model uncertainties is input information (Borrego et al., 2003). For each model, 72 

there are many parameters (e.g., vehicle engine technology conditions, vehicle starting and running activities, 73 

road conditions, weather conditions, et al.) (Barth et al., 1996) that need to provide corresponding proper 74 

experimental data.  75 

The International Vehicle Emission (IVE) (Davis et al., 2005), described as an improved estimation tool for 76 

mobile source emissions, is specifically designed to improve the flexibility needed by most developing countries 77 

to address mobile source air emissions, including a large range of criteria pollutants, GHGs, and toxic emissions 78 

(Lents et al., 2004; Davis et al., 2004; Liu et al., 2005; Wang et al., 2006; Liu et al., 2007). Compared to other 79 

model-based emission models, the IVE model obtains high precision on emissions modeling while reducing some 80 

unnecessary input information. However, like the other models, one difficulty when applying the IVE model to 81 

GHG estimation is to obtain detailed and accurate data about vehicle activities. Two main approaches are used to 82 

deal with this problem. One approach is to directly input the invested traffic activity data into the IVE emission 83 

models. The other approach is to integrate the emission models with the dynamic traffic simulation model.  84 

For the first approach, most research is designed to only collect representative traffic information at specific 85 

time periods and places (Liu et al., 2007). Currently, the solution is to use statistical tools to derive vehicle driving 86 

patterns from sample data and then extrapolate to cover the entire urban area. However, the results are static and 87 

cannot vary with sudden changes in traffic conditions since the investigation is subject to limited investigation 88 

locations and time periods. Moreover, extrapolating the sampling statistical results to represent the total urban area 89 

may introduce uncertainties. In addition, this investigative approach requires a large amount of manpower, 90 

material, and financial resources while the efficiency of the operations is relatively low. The dynamic traffic 91 

simulation approach can provide the time dependent Origin-Destination (O-D) travel demand matrixes while 92 

providing detailed traffic network configuration, which is commonly defined in terms of geometry, link capacities, 93 

free-flow speeds, and so on (Gomes et al., 2004). Moreover, the dynamic model can simulate each vehicle’s 94 

instantaneous running activities, including acceleration and deceleration operations. INTEGRATION (Rakha et 95 

al., 2004), TRANSIMS (Zietsman et al., 2001), and VISSIM (PTV 2005) are the three major representative 96 

integrated models. However, modeling applicability is the biggest issue for these models since there are huge 97 

traffic characteristic differences among different nations and areas. Some researches (Min et al., 2008) have 98 

argued that current existing traffic simulation models are not suitable for simulating actual transportation 99 
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conditions, especially the mixed traffic in the downtown area in China.   100 

Additionally, these main models have seldom been applied to characterize spatial and temporal 101 

distribution and variation of traffic-related CO2 emissions (Gregg et al., 2008). In most cases, estimating the total 102 

quantity of the emissions is the main objective of these models and attracts tremendous attention. However, 103 

research on the characteristics of spatiotemporal distribution and variation of traffic-related CO2 emissions could 104 

provide the ability to understand the impact of traffic load and variations on CO2 emissions volume and prioritize 105 

emission control and reduction strategies based on location. 106 

At present, with the development of intelligent transportation systems (ITS) in many urban areas, large 107 

quantities and varieties of real-time traffic data collected by inductive loop, video, radar, infrared ray, and floating 108 

cars have been obtained (Zhang et al., 2007). It becomes possible to obtain the real-time transportation conditions 109 

over the whole urban area from these data. In this paper, we present an integrated model to support area wide 110 

real-time transportation CO2 emissions estimation. This study provides a framework for closely integrating the 111 

ITS technologies, GIS technologies and IVE models for GHG emission estimation. Within the framework, ITS 112 

technologies are applied to collect large-area real-time traffic data and generate the needed vehicle driving 113 

activities profiles. GIS technologies act as a database exchanger to organize all geographic-related information. 114 

The GIS toolset is also used to calculate CO2 emissions in road-segment, and express the spatiotemporal 115 

distribution of the transportation CO2 emissions in the urban area. The IVE model is imported to provide 116 

microscopic vehicle CO2 emission rates. This paper is organized as follows. Section 2 introduces our approach on 117 

how to develop the integrated model. Section 3 describes our data preparation efforts. Section 4 analyzes our case 118 

study by using the ROSE model estimating the highway transportation GHG emissions in Beijing, China, in Dec. 119 

2008. Conclusions are presented in Section 5. 120 

  121 

2 MODEL DESCRIPTIONS 122 

2.1 Framework of the ROad SEgment based Transportation CO2 Emission Model  123 

ROSE is an integrated model that seeks to carry out a combination of ITS technologies, GIS technologies and IVE 124 

models. ROSE facilitates the modeling of transportation CO2 emissions production through integration of two 125 

main inter-linked steps. These are: 1) ITS real-time traffic data collection and geographic-related data unified 126 

organization; and 2) vehicle driving activities generation and urban area transportation CO2 emissions 127 

computation.  128 

The first step is to utilize GIS technologies to effectively organize and manage the ITS collected real-time 129 

traffic data such as floating car data (FCD), loop detector data (LDD), other geographic-related data (e.g., urban 130 

road network, digital elevation model (DEM), and aerial images) and statistical data (e.g., urban vehicle 131 

technologies distribution information). All these data will be given geographic coordinate information for 132 

identification and location. A three-level hierarchical structure (road centerline level-road segment level-road lane 133 

and road raster level) is specially designed for uniformly organizing these different types of data from the aspect of 134 

the spatial structure.  135 

The second step is to utilize the IVE model to generate vehicle patterns, and vehicle specific power/engine 136 

stress bins distribution profiles from the well organized sampled real-time traffic data. Since these profiles could 137 

be resolved to each road segment, vehicle CO2 emissions could be estimated in road segment partitions.  138 

The final step is to take the ROSE model and apply it for estimation and analysis of the temporal and spatial 139 

distribution and variation of urban area transportation CO2 emissions. GIS visualization tools can be used for CO2 140 

emissions expression.  141 

The structure of ROSE is presented in FIGURE 1 and described in detail in the following sections. 142 
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 143 

FIGURE 1 Main Framework of the ROad SEgment Based Transportation CO2 Emission Model. 144 

 145 

2.2 The Structure of ITS Real-time Traffic Data 146 

In recent years, the floating-car system and fixed embedded loop detectors have been used as a way to collect 147 

transportation information in many nations and regions across the world. The data collection styles of floating cars 148 

and loop detectors are different - the former is mobile, while the latter is fixed. Furthermore, there are great 149 

differences in the aspects of recorded content and sampling time frequency. The probe data is recognized as a tool 150 

to describe the instantaneous vehicle activities, while the loop detector is suitable to record the traffic flow, 151 

occupancy, and average speed on a lane scale during a fixed time period. The sampling time interval (e.g., 1 s, 10 152 

s, 30 s, 40s, 60s or more) of GPS data is mainly determined by subjective experiences for different applications. 153 

For the loop detectors, the sampling time intervals are generally fixed (e.g., 30 s, 60 s, 120s or more). Thus, when 154 

organizing and applying these heterogeneous traffic data, there is a need to unify traffic data from the perspectives 155 

of both spatial and temporal structure.  156 

Based on the Map Matching Algorithm (Quddus et al., 2003), the floating car data and the loop detector 157 

data with the geographic information (e.g., longitude, latitude, and height) can be projected and matched with the 158 

road network and each data will be correlated with only one road unit. Since the traffic conditions in different road 159 

sections are different, we divide the road network into a great deal of road segments of suitable length. Each road 160 
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segment is considered as one road block holding the floating car and loop detector datasets. From the outside road 161 

segment, both data are unified with the same spatial structure. Each dataset depicts the traffic conditions of the 162 

corresponding road segment. The inside structures of both data also need to be well organized. Details are 163 

described in the following sections. Because the sampling frequency of the loop detectors is lower than the 164 

sampling frequency of the floating cars, the fixed sampling time interval of the loop detectors will be chosen to be 165 

the basic time unit for data integration.  166 

  167 

2.2.1 Horizontal Aggregation for Raster-Based Floating Car Data 168 

The floating cars record the vehicular running status and the instantaneous position of the car. Frequently, 169 

compared to the adjacent vehicles, one vehicle shows a similar moving pattern. One virtual point can be used to 170 

represent the behaviors of the adjacent points in a relatively small section on the road. This section is defined as a 171 

road raster and can be generated through the road network Rasterizing Algorithm. When there are more than one 172 

floating car points matched into the same raster, the virtual point speed of the road raster is estimated by using the 173 

Exponential Smoothing Method (Arroyo, 2007). The abstract form of the Exponential Smoothing Method is: 174 

 1 2 1 2( ) ( ), ( ), ..., ( ), ( 1), ( 1), ..., ( 1)i i i ip i i iqV k F V k V k V k V k V k V k⎡ ⎤= − − −⎣ ⎦       (1)  175 

where ( )iV k is the smooth average speed, ( )iwV k is the velocity of the wth sampling floating car during time interval 176 

k, p is the total number of the sampling points matched to the road raster i during time interval k, and q is the total 177 

number of the sampling points matched to the road raster i during previous time interval k-1.The detailed equation 178 

of ( )iV k is as follows: 179 

 

( )

1

1 1

( ) (1 ( )) ( 1) ( ) ( )

1( ) , ( ) ( )
( )

(1 ) , (1 )
( )( ) ( 1),

1 ( )

i i i

n k
k

i ij
jk

k k k k k k

k i i

V k f k V k f k V k

Ef k r V k V k
A n k

E r e r E A r e r A
n ke V k V k r

n k

=

− −

= − − +

= ⋅ = ⋅

= ⋅ + − = ⋅ + −

= − − =
+

∑              (2) 180 

where ( )iV k is the arithmetic average speed, ( )f k  is weighting coefficient, kE is defined as the smooth error, kA is 181 

defined as the smooth absolute error, ke is defined as the error of estimation, and ( )n k is the number of the 182 

sampling floating car data points matched to raster i during time interval k. 183 

In this method, each road raster is assigned a smooth average velocity during the time interval k. The adjacent 184 

road raster will then be horizontally aggregated together as the road segment. The velocity dataset of the vehicles 185 

in the road segment can be generated by a horizontally linear scan, represented by mathematic Equation 3: 
 

186 

1 2 3[ , ] [ , ] [ , ] [ , ] [ , ]
1

[ , , , ... ]j j j j j

i n

n
t t t t t
c R c R c R c R c R

i

V V V V V
=

=U                     (3) 187 

where n is the total count of the road raster of a road segment, 
iR is the ith road raster, and 

jt is the time period. The 188 

dataset can be processed to invert the speed fluctuation in the road during a given time period. 189 

 190 

2.2.2 Vertical Aggregation for Lane Based Loop Detector Data 191 

The loop detector data (LDD) reports the directional lane-by-lane value of the number of vehicles crossing the 192 

lane in a given time period. These data, filtrated by the loop detector ID number and the traffic flow direction 193 

identification, can be vertically aggregated as the dataset for each road segment:  194 
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1 2 3[ , ] [ , ] [ , ] [ , ] [ , ]

1

[ , , , ... ]j j j j j

i m

m
t t t t t
c L c L c L c L c L

l

F F F F F
=

=U
                    

(4) 195 

where, m is the total lane number of each road segment, 
iL is the ith lane, and 

jt
is the time period. The dataset can be 196 

processed for computing the average road traffic flow. 197 

 198 

2.2.3 Hierarchical Road Segment Based Road Network Model 199 

In this paper, a hierarchical structure of the road network integrated with the real-time traffic data is proposed as 200 

shown in FIGURE 2.  201 

 202 
FIGURE 2 Hierarchical Structure of the Road Network. 203 

The characteristics of each hierarchical structure are illustrated as follows: 204 

Level 1: Road Centerline. This provides an abstract structure of the road network by using a single line to 205 

depict the road and treats a cross or flyover as several links and nodes. Two road centerlines with different 206 

directions are aggregated into one whole street. The road is a collection of lanes with the same flow direction. The 207 

direction from or nearly from east to west or south to north is recoded as "0", otherwise is "1". The one-way street 208 

is also depicted as two road centerlines, but recorded as the same direction. 209 

Level 2: Road Segment. Road segment is an area based structure with a certain width. The spatial 210 

structure and topology is derived from the road centerline based road network while the length is determined by 211 

the distribution of the loop detectors. Each road segment is a collection of the horizontally aggregated road raster 212 

and vertically aggregated lane segments. It is the basic unit for the CO2 amount, and density computation and 213 

expression. 214 

Level 3: Lane Segment and Road Raster. Both the lane segment and road raster are virtual structures of 215 

the road network. They are used for traffic data organization and management, CO2 amount and density 216 

computation though they are not the basic unit for expression. Lane segment and road raster are the medium for 217 

correlating the road network with the real-time traffic data. Loop detector and floating car data series described in 218 

the above are recorded as the attributes of the lane segment and road raster, respectively.  219 

 220 

FIGURE 3 shows the process of integration of road network and real-time traffic data. First, the road 221 

network is converted from the structure of road centerline to the structure of the road segment which is aggregated 222 

by the lane segments and road raster. Each road raster and lane segment is then mapped with the real-time floating 223 

car data and loop detector data, respectively. 224 

Floating Car Data 

Loop Detector Data 
Road Centerline 

Road Raster 

Lane Segment 

Road Segment 

Road Segment Node 

Road Centerline Node 
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 225 

FIGURE 3 Process of Integration of Road Network and Real-time Traffic Data. 226 

 227 

2.3 Emissions Estimation 228 

 229 

2.3.1 Overview of IVE Model Technology  230 

Compared to other familiar vehicle emission models, the IVE model (Davis et al., 2005) adopts binning 231 

methodology to describe and characterize driving patterns. The binning methodology is based on two parameters: 232 

vehicle specific power (VSP), and engine stress (ES). These two parameters indicate the relationship between the 233 

vehicle’s instantaneous working condition and the emission rate. VSP is the main indicator of vehicle based 234 

emissions rate, which comprehensively considers most key factors (e.g., vehicle instantaneous speed and 235 

acceleration, road grade, road slope, wind, etc.) that influence the vehicle emission amount. The VSP equation is: 236 

2 6132 302* 1.1*10 * * 9.81*Atan( ( ))VSP v v v a Sin Grade= ∗ + + +             (5)  237 

where v is the vehicle instantaneous speed (m/s), a is the vehicle instantaneous acceleration (m/s2), and grade is 238 

the road grade in radians. 239 

Vehicle stress (STR) uses an estimate of vehicle RPM combined with the average of the power exerted by the 240 

vehicle in the 15 seconds before the event of interest. The STR equation is: 241 

0.08*STR RPM PreaveragePower= +              (6) 242 

Except the environment factors, VSP and STR values can be easily calculated from second-by-second 243 

vehicle route points. The VSP and STR values are broken into 20 VSP bins and 3 STR bins. In total, each point 244 

can be allocated into one of the 60 driving bins. For each type of vehicle technology, there are 60 adjusted 245 

emission rates corresponding to 60 bins.  246 

To present a city’s emission inventory, one important step is to present the distributions of driving activities 247 

that occur in each driving bin.  248 

2.3.1 Road-segment Fleet Driving Activities Generation  249 

It is obvious that using 1-Hz GPS data is adequate for describing the high-resolution driving activities of the 250 

vehicles including the immediate acceleration or deceleration. Such sampling frequency can provide enough 251 

sensitivity to detect the micro change of the vehicle’s velocity. However, completely collecting the high- precision 252 

data set covers the entire urban area and is difficult and very time consuming. One solution is to use the 253 

interpolation method to revert the large area-covered but relatively low-frequency sampling FCD into the 254 

vehicle’s real continuous running activities. The fundamental idea of cubic spline interpolation is based on the 255 
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Road Centerline Node Road Segment Node 
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engineer’s tool used to draw smooth curves through a number of points. The numerical routine is to fit n equations 256 

subject into the boundary conditions of n+1 data points over n intervals. Cubic spline interpolation method must 257 

satisfy three conditions as follows: 258 

1. ( )V x will be continuous on the interval [ ]1, nx x ; 259 

2. ( )V x is differentiable, and ( )V x′ will be continuous on the interval [ ]1, nx x ; 260 

3. ( )V x is also twice differentiable, and ( )V x′′ will be continuous on the interval [ ]1, nx x . 261 

The assumed form for curve fit for each segment is defined as a separate third degree polynomial iv$ , which 262 

is defined by 263 

3 2( ) ( ) ( ) ( )

1,2,...
i i i i iv x a x x b x x c x x d

for i n

= − + − + − +

=

$
           (7) 264 

where the spacing between the successive data points is 1i i ih x x −= −  265 

To make the curve pleasingly smooth across the interval, the function value, the 1st derivative, and the 2nd 266 

derivative must be equal at the interior node points for adjacent segments; that is, 267 

( 0) ( 0)

( 0) ( 0) 1,2,..., 1

( 0) ( 0)

i i

i i

i i

v x v x

v x v x for i n

v x v x

⎫− = +
⎪
⎪′ ′− = + = −⎬
⎪′′ ′′ ⎪− = + ⎭

$ $

$ $

$ $

           (8) 268 

Define ( ) ( 0,1,2,... )i is x M for i n′′ = = , where iM  is a one degree polynomial, for the ith segment, the governing 269 

equation is: 270 

1 1 1 1 1 12( ) 6( [ , ] [ , ])

1, 2,... 1
i i i i i i i i i i ih M h h M h M f x x f x x

for i n
− + + + + −+ + + = −

= −
          (9) 271 

where 1[ , ]i if x x+ is the slope for the line across the start and end point of the ith road segment; 0M  and 
nM  are zero 272 

for the natural spline boundary condition. 273 

The fundamental idea underlying the cubic spline interpolation is to draw a smooth fleet speed 274 

fluctuation curve through the virtual points aggregated in a road segment. The numerical routine is to fit n 275 

equations subjected to the boundary conditions of 1n+ virtual points over the n road rasters. Based on the cubic 276 

spline interpolation theory, once the dataset 
[ , ]

1

j

i

n
t

c R
i

V
=

U is obtained, the continuous fleet speed fluctuation curve 277 

between the road raster in a road segment scale can be fitted.  278 

 279 

2.3.2 Road-segment Vehicle Kilometers Traveled (RS-VKT) 280 

Vehicle miles traveled (VMT) or vehicle kilometers traveled (VKT) is commonly considered as a major factor in 281 

determining the emission amount in urban areas. In many recent applications (Smit et al., 2008; Wang et al., 2009), 282 

VKT is an uncertain factor since the origin-destination profiles are generated from the traffic assignment models. 283 

However, for a road segment, based on the real-time loop detector data, VKT estimation results become accurate 284 
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because VKT is correlated to the traffic volume and the road segment length. In the last section, the traffic volume 285 

of the road segment is described as a dataset of the flows
1 2 3[ , ] [ , ] [ , ] [ , ] [ , ]

1

[ , , ,... ]j j j j j

i m

m
t t t t t
c L c L c L c L c L

l

F F F F F
=

=U . Accordingly, the VKT 286 

for the road segment can be easily computed using Equation 10. 287 

 
[ , ] [ , ] [ ] [ , ] [ ]

1
*

l

m
t

c t c t c c L c
l

VKT Flow Length F Length
=

= = ∗∑              (10)  288 

 289 

2.3.3 Road-segment CO2 Emissions Estimation 290 

Within the ROad-SEgment CO2 Emissions Estimation (ROSE) model, the total emission amount is the summary 291 

of each road segment’s CO2 emission volume generated by vehicles. The road segment is adopted to be the basic 292 

computational unit in the ROSE model. As shown in Equation 11, based on the IVE model, the overall CO2 293 

running emissions (in grams) for road segment c during specific time period t is quantified by multiplying the 294 

comprehensive CO2 emission rate by the distance traveled and by the ratio of the average velocity of the standard 295 

driving cycle and the modeled cycle. The comprehensive emission rate is the adjusted emission rate multiplied by 296 

the fraction of the travel and the amount of the driving pattern for each technology (ISSRC & UCR, 2008). 297 

[ , ] [ , ]
[ , ]

60

[ , ] [ , , ] [ ]
1

* *

( * )

FTPrunning comprehensive
c t c t

specfic c t

comprehensive
c t c t b b

b

V VKTE Q
V

Q f Q
=

=

=∑
              (11) 298 

where, FTPV  is the average velocity of the standard driving cycle (a constant (g/km)), [ , ]specfic c tV is the average 299 

velocity (g/km) of the total vehicle trips, VKT  is the vehicle kilometers traveled, [ , ]
comprehensive
c tQ is the road segment 300 

comprehensive emission rate for total vehicles, 
[ , , ]c t bf is the fraction of travel by a specific technology b,

[ ]bQ is the 301 

adjusted emission rate for technology b for road segment c during time period t. 302 

 303 

3. Data Preparation 304 

In our experiments, we collected data from 390 fixed loop detectors buried under the Beijing highway lanes and 305 

more than 20,000 GPS devices installed in taxis running on the roads of the Beijing city urban area in Dec. 2008. 306 

These data were obtained from the transportation agency in Beijing and several taxi companies. The sampling 307 

time intervals of loop detector data and floating car data were 120s and 40s, respectively. The average distance 308 

between two adjacent loop detectors was less than one kilometer and the spatial distribution of the loop detector is 309 

shown as green pin points in FIGURE 4. The city road network data is obtained from the company NavInfo, 310 

China.  311 
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  312 

FIGURE 4 Highway Network and Spatial Distribution of the 390 Loop Detectors Fixed in the Four Ring 313 

Roads and Road Links within the Urban Area of Beijing City. 314 

 315 

Object extraction and detection technology (Hinz et al, 2001) and assistant manual judgment were applied to 316 

generate the statistical Vehicle Class Distributions profile in Beijing from a high resolution aerial image 317 

photographed in 2008. The image represents an area located in the Haidian Distinct of about 19.4 square km 318 

(3.15km*6.16km) from the inner ring road to the outer ring road (FIGURE 5). The results show that the majority 319 

of the vehicles, more than 73.9%, were passenger cars. Other types of vehicles in the fleet composition include 320 

taxis (19.6%), buses (4.8%), and trucks (1.7%), etc. 321 

        322 

FIGURE 5 Photographed Area located in Haidian District, Beijing, China (2008). 323 

 324 

Other key statistical data about the Beijing vehicle technologies distribution (e.g., fuel type, air conditioning 325 

system usage, transmission type, vehicle age, catalytic converter) and adjusted vehicle emission rates, were 326 

imported from the report on Beijing Vehicle Activity Study (Liu et al, 2005) and the IVE official website 327 

http://www.issrc.org/ive/. These data were used for measuring the comprehensive road segment emission rate in 328 

this study.  329 

0 5 10 152.5
Kilometers
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 330 

4. CASE STUDY 331 

4.1 Study Area and Time 332 

The urban highway transportation system of Beijing city was chosen as our study subject. The Beijing highway 333 

system within the urban area includes four ring roads (loop highways) and multiple links between ring roads. The 334 

total length of the highways in our study is about 310 kilometers. Our experiment modeled the CO2 emission on 335 

Dec. 9, 2008 when the Olympics and Paralympics had been closed about three months. We used the ROSE model 336 

to demonstrate the daily CO2 emissions from the Beijing highway transportation in 2008 based on real-time traffic 337 

data. 338 

 339 

4.2 Experiment Results  340 

According to our experiments, on Dec. 9, 2008, the total CO2 emissions emitted from vehicles that passed through 341 

the Beijing highway system was approximately 7,341 tons. The detailed hourly variation of the aggregated CO2 342 

emissions from the highway within Beijing is shown in FIGURE 6. There are two obvious CO2 emission peaks in 343 

the diurnal time and one clear trough in nocturnal time. The peak CO2 emission occurred around 9:00 and 17:00, 344 

in the range of 500 tons and 550 tons per hour, respectively. These two time periods were chosen because they are 345 

the rush hour for people going to work and coming back home. Between these two peaks, there is one small trough 346 

around 12:00am, as it is lunch time. The hourly CO2 emission amount increased rapidly from 6:00 to 7:00, while it 347 

declined quickly from 18:00 to 19:00. The lowest hourly emission rate was about 45 tons per hour which occurred 348 

around 3:00am in the early morning. Obviously, between 10:00pm in the evening and 7:00am in the morning, the 349 

hourly CO2 emission rate was very low and far less than 200 tons. Disaggregating total emissions according to the 350 

time of day revealed that: 11.6% were at the AM peak time (7:00-9:00), 52.2% at the inter-peak time (9:00-17:00), 351 

13.6% during the PM peak time (17:00-19:00), and 22.6% in the evening, night time, and the early morning 352 

(19:00-7:00).  353 

 354 

FIGURE 6 Comparison of the Results of Hourly Variation of CO2 Emissions for Beijing Highway 355 

Estimated by Tsinghua University’s Approach and ROSE, Respectively. 356 

 357 

The spatial-temporal distribution of the CO2 highway emission rate in Beijing is revealed in FIGURE 7. 358 

Six representative time periods, such as rush hour, work hour, and so on, were chosen to depict the spatial 359 

Emission peaks 
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distribution and variation of the CO2 emission linear density. The CO2 emission linear density is defined as the 360 

weight (in kilograms) of CO2 emissions per kilometer per hour (kg/km/h). It was concluded that the CO2 densities 361 

changed at different times and areas. During the night time, the CO2 emissions level of most of the roads was far 362 

less than 500 kilograms per kilometer per hour while during the PM peak time, the CO2 emissions linear density of 363 

many road segments reached 3500 kilograms per kilometer per hour or even more. Some road segments reached 364 

as high as 5000 kilograms per kilometer per hour during rush hour. FIGURE 7 shows the spatial distribution 365 

nonuniformity of CO2 emissions and depicts some inherent laws as well.  Our experiment results also demonstrate 366 

that there was a trend that the hourly CO2 emission density increased from the outer ring roads to inner ring roads 367 

and from north-west to south-east. 368 

 369 

 370 

 371 

 372 

FIGURE 7 Representative Spatiotemporal Distribution of Road Segment CO2 Emissions Linear Density 373 

(kg/km/h) for Beijing Highway Network on Dec. 9, 2008 Estimated by ROSE. 374 

 375 

4.3 Discussion  376 

As shown in FIGURE 6, the fluctuation and variation of the amount of highway CO2 emissions shows a similar 377 

change pattern in the results developed by both Tsinghua University (Liu et al, 2005) and our ROSE model. 378 

Compared to the results from Tsinghua University’s study, the CO2 emissions hourly fluctuation curve developed 379 

by our approach is more smooth and close to reality. Our approach decreased the uncertainties, especially those 380 

that happened in the evening and night, while the video-based investigation approach has difficulty getting real 381 

time traffic data. Additionally, the real-time traffic data based approach is sensitive enough to reveal everyday’s 382 

CO2 emissions variation while the statistical approach is relatively static.  383 

(A)  (B) 

(C)  (D) 

(E)  (F) 

500.1‐1000.0 1000.1‐1500.00.0‐500.0 Density (kg/km/h) 

Time (h)          (A) 0:00‐1:00 (B) 8:00‐9:00 (C) 12:00‐13:00 (D) 15:00‐16:00 (E) 17:00‐18:00 (F) 19:00‐20:00 

1500.1‐2500.0 2500.1‐3500.0 3500.1‐5000.0  >5000.1 
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One interesting phenomenon found is that during the peak CO2 hours, the total amount of CO2 emissions 384 

in 2008 was lower than the total amount in 2004 in Beijing. It was mainly because of the local government urban 385 

traffic restriction rules. In 2008, Beijing’s authority issued a novel and special traffic control rule named 386 

"odd-even" traffic restrictions for reducing the daily vehicle numbers traveled in the urban area. The rule had been 387 

enforced several months before the Olympic Games. This rule limited the particular number of vehicles traveling 388 

on the road. Cars were only allowed to travel in the Beijing urban area on alternate days depending on whether 389 

their license plate numbers ending in particular numbers. The restrictions divided vehicles into five groups. For 390 

example, cars with plate number ended in "0" or "5" were not allowed to drive on road on Monday; cars with the 391 

number of "1" or "6" at the end of their license plate were not allowed to travel in the urban area on Tuesday. In the 392 

same way, the remaining cars with specific numbers were not allowed to drive on the corresponding workday.  393 

Saturday and Sunday were free from the above restrictions. When the 2008 Beijing Olympic games ended, these 394 

special restrictions continued to be enforced. As is shown in FIGURE 7, our results have shown that these traffic 395 

restriction rules received great success in reducing vehicles generating GHG. There is approximately 20% daily 396 

reduction of the vehicle generated CO2 emissions in the Beijing urban area. 397 

 398 

5. CONCLUSION 399 

This paper presents an approach to estimate the total, spatiotemporal distribution and variation of urban area 400 

traffic CO2 emissions based on various real-time traffic data (e.g., floating car data, loop detector data). 401 

Furthermore, this paper provides a framework of the ROad SEgment-based Transportation CO2 Emission Model 402 

(ROSE) that integrates the road network, real-time traffic data, and the IVE model. The ROSE model was applied 403 

to the highways of Beijing city on Dec. 9, 2008. The overall traffic-related CO2 emission was computed and the 404 

daily variation patterns were analyzed. Current work has demonstrated that the ROSE model is a useful tool for 405 

accurately estimating the traffic-related greenhouse gas emissions. An important finding is that some traffic 406 

restriction rules can greatly reduce the urban transportation GHG emissions.  407 

Several areas of research are recommended to expand the applicability and scope of the ROSE model. 408 

First, CO2 emission model/approach for the urban area without adequate real-time traffic data need to be 409 

developed. Second, real-time traffic data input standards, including the data structure and the attribute format need 410 

to be built up. Third, approaches for integrating the micro-scopic transportation simulation model need to be 411 

considered. To create a "low-carbon" society, further work will be focused on the traffic conditions, especially the 412 

impact traffic congestion has on the traffic related GHG emissions. Correspondingly, traffic restrictions and rules 413 

that influence the traffic conditions also need to be effectively assessed. 414 
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