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1. INTRODUCTION

Currently, no automated means of detecting abnormal mammograms exist. While
knowledge discovery capabilities through data mining and data analytics tools are
widespread in many industries, the healthcare industry as a whole lags far behind.
Providers are only just beginning to recognize the value of data mining as a tool to
analyze patient care and clinical outcomes [8]. The research conducted by the authors
investigates the use of genetic algorithms for classification of unstructured
mammography reports, which can be later correlated to the images for extraction and
testing.

In mammography, much effort has been expended to characterize findings in the
radiology reports. Various computer-assisted technologies have been developed to assist
radiologists in detecting cancer; however, the algorithms still lack high degrees of
sensitivity and specificity, and must undergo machine learning against a training set with
known pathologies in order to further refine the algorithms with higher validity of truth.
In a large database of reports and corresponding images, automated tools are needed just
to determine which data to include in the training set. Validation of these data is another
issue. Radiologists disagree with each other over the characteristics and features of what
constitutes a normal mammogram and the terminology to use in the associated radiology
report. Abnormal reports follow the lexicon established by the American College of
radiology Breast Imaging Reporting and Data System (Bi-RADS) [2], but even within
these reports, there is a high degree of text variability and interpretation of semantics.
The focus has been on classifying abnormal or suspicious reports, but even this process
needs further layers of clustering and gradation, so that individual lesions can be more
effectively classified [29]. The tools that are needed will not only help further identify
problem areas but also support risk assessment and other knowledge discovery
applications.

The knowledge to be gained by extracting and integrating meaningful information from
radiology reports will have a far-reaching benefit, in terms of the refinement of the
classifications of various findings within the reports. This will support validation,
training and optimization of these and other machine learning and computer-aided
diagnosis algorithms to work both in this environment and with other medical and
imaging modalities. In the near-term, the objective of this work is to accurately identify
abnormal radiology reports amid a massive collection of reports. The challenge in
achieving this objective lies in the use of natural language to describe the patient’s
condition. The premise of this work is that abnormal radiology reports consist of words
and phrases that are statistically rare or unusual. If this is true, then it is expected that
abnormal reports will be significantly dissimilar in comparison to normal radiology
reports.



To achieve this objective, our approach employs maximum variation sampling (MVS),
which is implemented as an adaptive sampling approach[16][32][33]. Maximum
variation sampling seeks to identify a particular sample of data that will represent the
diverse data points in a data set. Adaptive sampling continues to draw samples from the
population based on previous samples until some criteria have been met. Previous results
from using MVS indicated that an ideal sample could be found very quickly using this
approach [17][18].

2. BACKGROUND

Mammography is the procedure of using low-dose X-rays to examine the human breast
for the purposes of identifying breast cancer or other abnormalities. Currently, for each
patient that undergoes a mammogram, there is at least one X-ray image and one textual
report written by a radiologist. In the report, the radiologist describes the features or
structures that they see or do not see in the image. If an abnormality or suspicious area is
found, the patient may undergo a diagnostic mammogram or biopsy, which results in
additional images and reports in the patient’s record. Essentially, these reports are meta-
data about the corresponding image that is written by a human subject matter expert. In
order to effectively train a computer-assisted detection (CAD) system, these reports could
be mined and used as supplemental meta-data. Unfortunately, little work has been done
to utilize and maximize the knowledge potential that exists in these reports.

There are several challenges in utilizing these reports. First, the reports vary in length.
Some radiologists use more words than others when describing the same features. For
example, in patients that do not exhibit any suspicious features, there are some reports
that very simply state that there are no suspicious features. However, for the exact same
patient with no suspicious features in a different year, a different radiologist will provide
a much more lengthy report that describes all of the suspicious features that did not exist.

To provide a better perspective of the challenge of mining these reports, consider the
following question. Given a database of these reports, how does one classify those
reports that represent abnormalities in the patient? In mammography, most patient
reports will represent “normal” conditions in the patient. Consequently, the reports with
“abnormal” conditions are rare (defining the difference between what is “normal” and
“abnormal” is beyond the scope of this work). Performing a cluster of these reports, most
of the normal reports would cluster together while the abnormal reports would not form a
cluster. This is because “abnormal” conditions tend to be very unique and very specific
to a patient while “normal” conditions are much more generic and broad. Even if
clustering provided value, clustering a very large database of these reports is
exceptionally computationally expensive. Categorizing would be faster, however, the
challenge remains of determining the appropriate categories, and even then, the abnormal
reports may not categorize correctly.

Another challenge to utilizing these reports lies in the language that is used in
mammograms. Abnormal reports tend to have a richer vocabulary than normal reports.

In addition, normal reports tend to have a higher number of “negation” phrases. These
are phrases that begin with the word “no” such as in the phrase “no findings suggestive of
malignancy.” Consider the phrases shown in Table 1 and Table 2. These are the



negation phrases that generally occur in normal reports and the ones shown here are
samples of the variations that have been found. In the set of reports used for this work,
there were at least 286 variations of phrases for Table 1 and 1,231 variations of phrases
for Table 2.

Table 1. Example phrases using "no" and "malignancy"

no malignancy
no mammographic features malignancy
no mammographic features suggestive of malignancy
no findings suggestive of malignancy
no significant radiographic features of malignancy
no radiographic findings suggestive of malignancy
no radiographic change suggestive of malignancy
no specific radiograpic features of malignancy
no mamographic evidence of malignancy

Table 2. Example phrases using "no" and "suspicious"

no mammographic finding suspicious
no strongly suspicious forms

no strongly suspicious features
no strongly suspicious masses

no radiographically suspicious masses

no developing suspicious clustered microcalcifications

no finding strongly suspicious
no new suspicious mass lesions

no suspicious linear branching forms

Consider the phrase shown in Table 3 and Table 4. These phrases tend to occur in
abnormal reports (but may also occur in normal reports) and the ones shown here are
samples of the variations that have been found. In the set of reports used for this work,

there were at least 52 variations of phrases for Table 3 and 691 variations of phrases for
Table 4.

Table 3. Example phrases using "appearance" and "tissue"

appearance suggesting radiating strands of tissue
appearance suggestive of accessory breast tissue
appearance of normal glandular tissue
appearance of asymmetric fibroglandular tissue
appearance of fibroglandular tissue
appearance of glandular tissue
appearance of normal fibroglandular tissue
appearance of soft tissue densities bilaterally

Table 4. Example phrases using "additional" and "views"

additional views obtained today demonstrate variation
additional compression views
additional set of bilateral cc views
additional lateral views




additional mediolateral oblique views
additional mammographic views
additional bilateral craniocaudal views
additional bilateral lateral medial views

Considering the language variations shown previously, the task of classifying those
reports that represent abnormalities is daunting. The variations of terms and syntax
create a combinatorial explosion while, semantically, these combinations tend to mean
the same thing.

3. RELATED WORKS

There has been considerable work in a variety of areas in the text analysis community
and a wide array of problems with processing and analyzing text data. Some of these
areas of text analysis include retrieval, categorization, clustering, syntactic and semantic
analysis, duplicate detection and removal, and information extraction to name a few
[4][23][24][28][34]. These areas range from analyzing entire datasets to analyzing a
single document. In general, as the size of the dataset increases, many of these
approaches begin performing poorly, or the value of their results begins to diminish. For
example, clustering usually requires comparing every document with every other
document. Obviously, as the dataset size increases, performance will noticeably suffer.
However, with categorization, the performance may not suffer considerably, but the
quality of the results will be diminished if a sufficient number of categories are not
identified or if the categories are not clearly or accurately identified [27].

Further improvement in information retrieval techniques requires the continued
development of algorithms whose basis lies in semantic extraction and representation.
Information retrieval (IR) research began with simple representations of documents and
the terms that they contained [26]. This research progressed into syntactic analysis such
as co-occurrence, N-grams, part of speech analysis, and context-free grammars.
Recently, IR research has continued to move toward a basis in semantics. Many of these
approaches involve the use of ontologies, conceptual graphs, and language models such
as described in [6][7][11][12][26]. Unfortunately, many of these approaches are either
unable to scale, require significant effort on the part of subject matter experts, or do not
handle domain specific data robustly. The work described here differs from these
approaches in that it leverages computationally efficient, unsupervised learning of
domain specific data in order to more effectively retrieve information. As a result,
extensive ontologies are not needed, or extensive effort on the part of a subject matter
expert.

In [1], an unsupervised approach to identifying cue phrases is discussed. Cue phrases are
formulaic patterns of phrases that have similar semantics but vary in syntactical and
lexical ways. In [1], the authors use a lexical bootstrapping algorithm that relies on the
use of “seed” phrases. While our work is addressing nearly the same problem, our work
differs in that no seed phrases are needed, and that s-grams found for cue phrases using
our approach are split into two classes.



Other work is being done in the medical environment to use automated software tools to
extract knowledge from unstructured radiology reports [5]. Preliminary findings
demonstrate that automated tools can be used to validate clinically important findings and
recommendations for subsequent action from unstructured radiology reports.
Commercially available software is also being tested to automate a method for the
categorization of narrative text radiology reports, in this case dealing with the spine and
extremities [31].

4. MAXIMUM VARIATION SAMPLING

The objective of this work is to accurately identify abnormal radiology reports amid a
massive collection of reports. As discussed earlier, abnormal reports have wider
variation in their language than normal reports. Consequently, what is needed is to
sample the most diverse reports and identify the common language that is unique to those
reports. This common language will then provide the basis for classification.

Sampling can be divided into two main categories: probability-based and nonprobability-
based. Probability-based sampling is based on probability theory and the random
selection of data points from the dataset. Nonprobability-based sampling is based on
purposeful selection, rather than random selection. The advantage of this form of
sampling is that it allows the analyst to look at data that may not otherwise be visible via
the random selection process. In the domain of mammography reports, random selection
would not easily find abnormal reports, as they constitute a very small portion of all
reports.

Within nonprobability-based sampling, there are several categories of sampling [16], one
of which is maximum variation sampling (MVS) [16]. This particular sampling method
seeks to identify a particular sample of data that will represent the diverse data points in a
data set. According to Patton [16], “This strategy for purposeful sampling aims at
capturing and describing the central themes or principle outcomes that cut across a great
deal of [data] variation.” In a large text corpus, this form of sampling provides the ability
to quickly characterize the different topics, or “threads” of information that are available.

A genetic algorithm (GA) was developed to implement the maximum variation sampling
technique. Genetic algorithms (GA) are nature-inspired algorithms that mimic the natural
selection process [10]. The natural selection process is generically defined as survival of
the fittest (i.e., only the most fit individuals for a given environment survive and
reproduce offspring). During this process, the offspring are created from the best
individuals; therefore, the population should continue to improve over several
generations. It has been shown that canonical genetic algorithms converge to an optimal
solution if the best individual remains in the population [25].

It is well known that a genetic algorithm performs very well for large search spaces and is
easily scalable to the size of the data set. In addition, GAs are also particularly suited for
parallelization [13][15][30]. To better understand the need for scalability and the size of
the search space in this problem domain, consider a set of 10,000 radiology reports.

Now, suppose an analyst needs to reduce this data set to 200 representative reports (only
2% of the entire data set). In that case, there are approximately 1.7 x 10*** different



combinations of reports that could be used to create a single sample. Clearly, a brute
force approach is unacceptable. In addition, many of the combinations would consist of
duplicate data that would lower the quality of the result for the analysts. Ultimately, an
intelligent and scalable approach such as a genetic algorithm is needed. As demonstrated
by Mutalik [14], a parallel genetic algorithm is well suited to a combinatorial
optimization problem.

Before applying a GA to the analysis of radiology reports, the reports must be prepared
using standard information retrieval techniques. First, reports are processed by removing
stop words and applying the Porter stemming algorithm [9][20][21]. Once this has been
done, the articles are then transformed into a vector-space model (VSM) [22][26]. Ina
VSM, a frequency vector of word occurrences within each report can represent each
report. Once vector-space models have been created, the GA can then be applied.

Two of the most critical components of implementing a GA are the encoding of the
problem domain into the GA population and the fitness function to be used for evaluating
individuals in the population. To encode the data for this particular problem domain,
each individual in the population represents one sample of size N. Each individual
consists of NV genes where each gene represents one radiology report (each report is given
a unique numeric identifier) in the sample. For example, if the sample size were 10, each
individual would represent one possible sample and consist of 10 genes that represent 10
different reports. This representation is shown in the following figure.

Sample Size is N

Document 1 Document 2 Document N

Gene 1 Gene 2 Gene N

Figure 1. Genetic representation of each individual

The fitness function evaluates each individual according to some predefined set of
constraints or goals. In this particular application, the goal for the fitness function was to
achieve a sample that represents the maximum variation of the data set without applying
clustering techniques or without prior knowledge of the population categories. To
measure the variation (or diversity) of our samples, the summation of the similarity
between the vector-space models of each document (or gene) in the sample is calculated
as shown in the following equation.

N N
Fitness(i) = E Ea ; + By + Similarity (Gene(i, j),Gene(i,k))

j=0k= j+1
Equation 1. MVS-GA Fitness Function

In Equation 1, the Similarity function calculates the distance between the vector space
models of gene j and & of the individual i. This distance value ranges between 0 and 1
with 1 indicating that the two reports are identical and 0 indicating that they are
completely different in terms of the words used in that report. Therefore, in order to find
a sample with the maximum variation, Equation 1 must be minimized (i.e., lower fitness



values are better). In this fitness function, there will be (N> — N) / 2 comparisons for each
sample to be evaluated.

In an effort to effectively characterize the phrase patterns of the mammography reports, it
is necessary to examine reports that are longer in length, so that more language can be
examined for patterns. The data set for this work contains numerous reports that simply
state that the patient canceled their appointment. These reports are very short in length
and are exceptionally distinct from all other reports (similarity values approaching zero).
In addition, abnormal reports tend to be longer in length than normal reports since the
radiologist is describing the abnormalities in more detail. Consequently, the fitness
function of the MVS-GA incorporates penalty functions as shown in equations 2 and 3.

(i)

Equation 2. Penalty factor for document j

Olj=€
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P )
=
Equation 3. Penalty factor for document &

In the penalty equations, shorter documents receive higher penalties while longer
documents receive much lower penalties. The penalty functions also return values that
are between 0 and 1, inclusive. As a result of the penalty functions, the cancellation
reports will receive the highest fitness values, while lengthy, abnormal reports will
receive the lowest fitness values.

To create children from a given population, genetic operators such as selection,
crossover, and mutation are applied to the individuals. For each generation, an average
fitness value is calculated for the population. Individuals with fitness values that are
above this average are selected as parents, while the other individuals are discarded. This
can be a very aggressive selection process if there are extremely fit individuals that are
far above the average. Once parents are selected, crossover and mutation operators are
applied to the parents to create children. The crossover and mutation operators are 1-
point operators [10]. After the MVS-GA is executed, the end result is a best sample of
mammography reports that are as diverse from each other as possible.

In addition to finding a sample of the most diverse reports, the MVS-GA was also
enhanced to extract the common skip bigrams (s-grams) from the reports. S-grams are
word pairs in their respective sentence order that allow for arbitrary gaps between the
words [1][3][19]. The s-grams for Table 1 in Section 2 are the words “no” and
“malignancy.” This s-gram uniquely identifies a particular semantic in the language of
mammography reports and enables the identification of all possible variations of such
phrases. Higher-level patterns may then be formed from these s-grams. For example, the
s-grams for Table 1 and Table 2 in Section 2 both imply that there are no abnormalities
seen in the patient.



Once the best sample is achieved by the MVS-GA, then phrases are extracted from each
document in the sample. For each phrase in the document, s-grams are extracted. Next,
the s-grams are counted across the sample of documents. S-grams that are common
across the sample will have higher frequency counts while s-grams with a frequency of 1
uniquely identify a particular document in the sample. For this work, only those s-grams
that are the most frequent in the best sample found are considered valuable. It is these s-
grams that have the ability to uniquely classify abnormal documents from a large set.

The primary intent of the GA is to converge toward an optimal solution. However, very
little GA research, if any, has been performed that leverages knowledge gained from the
individuals that failed to be selected and reproduce. In a typical GA, individuals that are
not selected for reproduction are simply discarded. For the MVS-GA, this is different. In
addition to extracting s-grams from successful individuals, the MVS-GA has also been
augmented to store the most frequent s-grams of the failed individuals. This will enable
answering questions such as what characteristic phrases make failed individuals inferior
to successful individuals. After each generation, s-grams and their frequencies from each
failed individual are extracted from each individual and stored in memory. After the
MVS-GA has completed, the memory now contains the most frequent s-grams that
caused individuals to fail in the GA. Individuals that fail in the MVS-GA tend to contain
a high number of normal reports. Successful individuals tend to contain a high number of
abnormal reports. The end result is that the MVS-GA learns the most frequent s-grams
for both abnormal and normal classes of reports.

3. DATA

In this work, unstructured mammography reports were used. Each report generally
consists of two sections. The first section describes what features the radiologist does or
does not observe in the image. The second section provides the radiologist’s formal
medical opinion as to whether or not there are suspicious features that may suggest
malignancy (i.e., or the possibility that the patient has cancer).

These reports represented 12,809 patients studied over a 5-year period from 1988 to
1993. There are 61,064 actual reports in this set, which include a number of reports that
simply state that the patient canceled their appointment. Table 1 and Figure 1 shows the
general statistics and distribution of the number of reports per patient.

Table 1. Statistics of Number of Reports per Patient

Minimum 1
Maximum 32
Average 4.77
Std Dev 3.57
Skewness 1.27
Kurtosis 1.76

According to Table 1, the positive skewness indicates that there are many patients with
more reports than the average. Since the study was five years in duration, the vast
majority of the patients will have either 1 report every year or 1 report every 2 years.



This explains the average of 4.77 and kurtosis of 1.76. For some of the patients,
abnormalities were identified that required additional diagnostic screenings. In addition,
some patients have reports that predate the beginning of the study. In the extreme case of
32 reports, a patient record contained reports that predated the study by nearly 10 years
and the patient also had breast cancer in the right breast and an abnormality in the left
breast that was later determined to be benign. Consequently, these patients with the extra
reports explain the positive skewness.
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Figure 1. Distribution of the Number of Reports per Patient

Furthermore, of this large data set, a human expert manually classified 100 reports as
being normal and 100 reports as being abnormal. From the normal set of reports, a
random sample of 90 reports was selected. From the abnormal set, a random sample of
10 reports was selected. The two samples were then merged to create a third set of 100
reports. This third set was used to initially test the MVS-GA. If the premise that
abnormal radiology reports consist of words and phrases that are statistically rare or
unusual, then the expected result of the MVS-GA will be a sample of reports consisting
predominantly of abnormal reports.

6. TESTS

Two sets of tests were performed. For the first set of tests, the test data consisted of just
100 reports from the human classified group, where 90 of these reports were classified as
normal and 10 were classified as abnormal. The objective of the first set of tests was to
determine if, in fact, the MVS-GA could identify abnormal reports amid a significantly
larger number of normal reports. After the first tests were performed, the MVS-GA was
enhanced as described early to extract s-grams from the successful and failed individuals
in the population. The objective of the second set of tests was to learn the key s-grams
that could be used to classify normal and abnormal reports.

For the initial tests, thirty runs of the MVS-GA were performed. The population size was
defined as 2,000 and the number of generations was set to 250. The crossover rate was
set to 0.7 and the mutation rate was set to 0.03. The sample size was set to 15 and the
data set size was 100 radiology reports (90 normal and 10 abnormal). In this case, there
are approximately 2.53 x 10"’ different combinations of reports that could be used to
create a single sample.



For the second set of tests, the MVS-GA was enhanced to extract s-grams from both
successful and failed individuals in the population. The population size was defined as
2,000 and the number of generations was set to 2,500. The crossover rate was set to 0.7
and the mutation rate was set to 0.03. The sample size was set to 100 and the data set
size was the entire set of 61,064 reports. In this case, there are approximately 3.74 x 1
different combinations of reports that could be used to create a single sample.
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0

7. RESULTS & DISCUSSION

For the initial tests, the GA consistently found 8 out of 10 abnormal reports. The
remainder of the sample consisted of 7 normal reports. Upon further analysis of the 10
abnormal documents, it was found that 4 of the reports were very similar to each other,
while the other 6 were very distinct from each other. Consequently, 2 of the 10 abnormal
reports were consistently absent from the final sample.

Upon further analysis of the normal documents that were included in the final sample, it
was determined that several of the reports represented “boundary” cases. These were
reports that, while considered normal by a human expert, represented situations where a
patient had either already undergone a lumpectomy or had a family history of breast
cancer and showed high potential for breast cancer. Other normal reports that were in the
final sample consisted of patients that needed further examination and therefore
underwent spot magnification for further confirmation. Another report represented a
patient where the radiologist had difficulty in determining a nodule in the image and
suggested that it was a “small deformable cyst.” Overall, these preliminary results from
the GA showed encouraging performance to find both abnormal reports and potentially
unusual normal reports without prior categorization or a predefined vocabulary of terms
to search.

Additional analysis of the final sample revealed another characteristic of the reports. For
each report, word phrases unique to that specific report were extracted. In this case,
unique word phrases are those phrases that only appear in one report in the sample. As
shown in Table 1, normal reports tended to have fewer unique word phrases as compared
to abnormal reports. In addition, abnormal reports tended to have more variability in the
number of unique word phrases, as shown by the standard deviation that is nearly twice
that of the normal reports.

Table 1. Number of unique phrases for each report

Normal Reports | Abnormal Reports
18 26
15 63
11 38
14 43
16 29
0 45
23 22
- 27
Avg: 13.857 Avg: 36.625
Std Dev: 7.151 Std Dev: 13.553




Further investigation into the word phrases of the abnormal reports revealed a wide-
ranging vocabulary and semantics. Table 2 shows example word phrases from both
normal and abnormal reports.

Table 2. Sample word phrases from reports

Normal Reports Abnormal Reports
benign biopsy intraductal carcinoma
breasts unchanged rod shaped calcifications
microcalcifications identified defined hyperdense nodule
remain unchanged hypoechoic lesion
small deformable cyst recommend excisional biopsy
benign macrocalcification lobulated hypoechoic mass

Analysis of the word phrases provides further evidence to support our hypothesis that
abnormal reports consists of statistically rare or unusual words, and thereby making them
easier to identify in a large collection of reports.

After this first test, the MVS-GA was enhanced to extract s-grams from the individuals in
the population. The s-grams discovered by the MVS-GA on the entire data set are shown
in Tables 5 and 6. Table 5 shows the top ten most frequently occurring s-grams from the
best solution obtained by the MVS-GA. These s-grams tend to uniquely define abnormal
reports. Many of these s-grams refer to procedures that are performed in the event that a
suspicious feature in the patient was observed by the radiologist. For example, the
patient may be asked to return with a few weeks for additional imaging such as an
ultrasound and magnification imaging. In addition, patients with suspicious features may
undergo biopsy, and in some cases, may also have a needle localization performed to
enhance the biopsy procedure. Furthermore, since breast cancer often affect the lymph
nodes, radiologist look for abnormalities relating to the lymph nodes as well. As can be
seen in Table 5, the MVS-GA successfully learned key s-grams that would significantly
enhance automated classification of abnormal reports.

Table 5. Top ten most frequently occurring s-grams from best solution obtained by
MVS-GA

Rank S-gram Example Phrase Number of
Variations
Observed
1 magnification magnification views 660
& views requested
2 core & stereotactic guided core 633
biopsy biopsy of
microcalcifications
3 needle & ultrasound-guided needle 245
localization localization procedure
4 nodular & showing questionable 2726
density increased nodular density
5 lymph & atypically located 748
node intramammary lymph node
6 needle & stereotactic needle core 57
procedure biopsy procedure
7 compression | right anterior compression 772
& views views




8 spot & views | recommended utilizing spot 852
views
9 spot & spot compression image 1123
compression
10 spot & medially exaggerated right 650
magnification cc spot magnification

Table 6 shows the top ten most frequently occurring s-grams that begin with the “no” and
were learned from the failed individuals (i.e., individuals that were not selected for
reproduction) in the MVS-GA. As discussed previously, most normal reports contain
some form of a “negation” phrase. These phrases refer to the non-existence of a
particular feature or condition in which the radiologist was searching. Abnormal reports
may contain such negation phrases, however, abnormal reports tend to be more focused
on the abnormalities that were found and not the abnormalities that were not found.
Consequently, MVS-GA successfully learned from the failed samples the key s-grams of
normal reports.

Table 6. Top ten most frequently occurring s-grams with the word "no"

Rank S-gram Example Phrase Number of
Variations
Observed
1 no & suspicious no finding strongly 1225
suspicious
2 no & no clear cut clustered 137
calcifications punctate calcifications
3 no & evident no mass lesions 46
evident
4 no & masses no new focal masses 365
5 no & no specific evidence of 286
malignancy malignancy
6 no & residual no residual 56
microcalcifications
7 no & skin no skin abnormalities 68
noted
8 no & thickening | no skin thickening seen 42
9 no & no apparent 16
complications complications
10 no & change no apparent interval 384
change

After the most frequent s-grams were extracted for normal and abnormal reports using

the MVS-GA, these s-grams were then analyzed for their ability to distinguish between
the two classes of reports. For this analysis the data set used consisted of 100 reports that
were classified as “Normal” and 100 reports classified as “Abnormal” by a human expert.
The average similarity (using the cosine similarity measure for all similarity calculations)
between the reports within the Normal was computed. This same average was also
computed for reports within the Abnormal class. Both of these averages are referred to as
“Within-class Similarity”. Next, the average similarity of reports between the two classes
was computed and referred to as “Between-class Similarity”. An ideal classifier should
have a within-class similarity near 1.0 for each class and a between-class similarity near



0.0 for each pair of classes. Such a classifier would very accurately distinguish reports as
being of a particular class.

Table 7 shows the results of using the most frequent normal and abnormal s-grams from
Tables 5 and 6 to represent the report content. As can be seen in the table, the ability to
distinguish the normal and abnormal reports is very low when using all of the terms in the
reports. This is due to the amount of noise in the language of the reports. However,
when using only the normal and abnormal s-grams that exist in the reports, the
improvement is considerable, especially for the normal class. Again, this is due to the
fact that normal reports are shorter and less variable in their language, while abnormal are
longer and more ambiguous in their language. Also notable is that this improvement in
the separability between normal and abnormal reports were achieved using considerably
fewer terms, as can be seen by the average feature vector lengths. Approximately 90% of
the terms could be removed from each report while providing significant improvements
in the within-class and between-class similarities.

Table 7. Abnormal and Normal class separability using most frequent extracted s-grams

Using only Percent
Using all terms Abnormal and Chanee
Normal S-Grams g
Average “Normal” Feature o
Vector Length 57.79 5.81 -89.94%
Average “Abnormal” o
Feature Vector Length H7.79 9-57 01.88%
Within-class similarity A118/.1114 8669 /.1070 675.40%
15 EE) . 0
Normal (avg/ std dev) (avg / std dev)
Within-class similarity 1306 /.1056 3621/.2999 177.26%
33 2 . o
Abnormal (avg/ std dev) (avg / std dev)
o .0618/.0876 .0531/.1544
Between-class similarity -14.08%
(avg/ std dev) (avg / std dev)

8. SUMMARY

Currently, text analysis of mammography reports remains a significant challenge.
However, solving this issue would provide numerous benefits. The work described here
represents results in applying a GA to assist with identifying abnormal mammography
reports from a large set of reports. Results were very encouraging and show tremendous
potential for future work. Future work will seek to leverage this technique to develop a
more advanced and specific training set of images to further enhance image-based
algorithms.
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