
> Paper #29124 <

1


Abstract— The requirements to access and manipulate data
across multiple heterogeneous existing databases and the
proliferation of mobile technologies have propelled the
development of mobile multidatabase system (MDBS). In that
environment, transaction management is not a trivial task due to
the technological constraints. Agent technology is an evolving
research area, which has been applied to several application
domains. This paper proposes an Agent-based Transaction
Management for Mobile Multidatabase (AT3M) system. AT3M
applies static and mobile agents to manage the transaction
processing in mobile multidatabase system. It enables a fully
distributed transaction management, accommodates mobility of
the mobile clients, and allows global subtransactions to process in
parallel. The proposed algorithm utilizes the hierarchical meta
data structure of Summary Schema Model (SSM) which captures
semantic information of data objects in the underlying local
databases at different levels of abstractions. It is shown by
simulation that AT3M suits well in mobile multidatabase
environment and outperforms the existing V-Locking algorithm
designed for the same environment in many aspects.

Index Terms— Computer networks, Concurrency control,
Database concurrency operations, Database systems, Mobile
communication, Mobile agent, Parallel processing, Wireless LAN

I. INTRODUCTION

continuous increase in amount of data and information
overload has led to difficulties in exploring, sharing and

manipulating data, and extracting underlying useful
information from it. To overcome these problems, various
database technologies and architectures have been developed
and adjusted for various requirements, ranging from
homogeneous centralized database, distributed database,
heterogeneous databases (multidatabases -- MDBS) to mobile
MDBS. Transaction management is known to be a core
functionality of every database management system (DBMS),
to achieve high system utilization and data integrity by
handling many database transactions concurrently. Such
functionality becomes more complicated in MDBS
environment because of the following constraints:
- Local databases are heterogeneous (i.e. having different

data representation and concurrency control scheme).
- Local databases are autonomous and do not reveal local

transaction execution schedule to the global level.

Furthermore, when user mobility comes into the picture, it
introduces additional constraints, which make transaction
management even more complex.
- Network connectivity is intermittent and unreliable.
- Power constraints due to limited battery power.
- Low bandwidth and disconnections may make mobile

global transactions long-lived transactions (LLTs), which
would hold resources for longer period of time.
The existing solutions have several shortcomings such as

allowing cascading aborts, generating a lot of communication
messages and consuming long processing time. Some
solutions have restricted assumptions; for example, global
transactions are compensatable, and disconnections are
planned or predictable.

We propose an Agent-based Transaction Management
scheme for Mobile Multidatabase systems (AT3M) that
addresses the aforementioned challenges and the deficiencies
of the existing solutions.

Table I is a quick reference to the various acronyms used in
the rest of our discussion.

Our approach uses agent-oriented design paradigm. An
agent is a software program and a mobile agent can halt its
execution at one host, migrate to another host in a network,
and resumes its execution. We chose the Summary Schema
Model (SSM) [10] as our MDBS organization model. It is
semantic based hierarchical structure where the leaf nodes are

Agent-based Transaction Management for
Mobile Multidatabase

Machigar Ongtang1, Ali R. Hurson1, Yu Jiao2, and Thomas E. Potok2
Dept. of Computer Science and Engineering, Penn State University

Computational Sciences and Engineering Division, Oak Ridge Natl. Laboratory

A
TABLE I

ACRONYMS

Acronym Description

GT Global transaction submitted to the global MDBS
GTAgent Agent representing a global transaction
GTC Global Transaction Coordinator; the GTC for a

global transaction is the node at which that
particular global transaction is resolved.

GST Global subtransaction
GST<x>L<y> A global subtransaction of global transaction x

which will be executed at local database y
GSTAgent<x>L<y> Agent representing a global subtransaction of

global transaction x which will be executed at local
database y

LDB Local database participating in the MDBS
LT Local transaction submitted to a local database
MDBS Multidatabase system
SSM Summary schema model, Semantic based

hierarchical structure used as our MDBS
organization model

SSN Summary schema node, node participating in the
summary schema model

> Paper #29124 <

2

local databases (local nodes) and other nodes are summary
schema nodes (SSNs). Local nodes join the MDBS federation
by publishing their local schema. In order to reduce the
amount of information held at high level SSNs, increasingly
abstract view of the data, known as summary schema, is
generated by summarizing the schemas of its child nodes. The
relationships between terms in the SSM include synonyms,
hypernyms (words with more general meaning) and hyponyms
(words with more specific meaning), provided by a thesaurus.
A sample schema hierarchy presented in the original paper of
the SSM is shown in Fig. 1. In this example, the term “Wage”
and “Salary” in node A and B are summarized to the
hypernym term “Earnings” at node 4.A.

Our major contributions are highlighted as follows:
- Non-lock based scheme prevents the need to wait for global

locks; thus, shorten the global transaction’s processing time.
- No cascade abort.
- The use of autonomous agents allows parallel processing of

global subtransactions. The capability of the agents to make
local decision avoids acknowledgement messages. As a
result, the scheme consumes less network bandwidth and
can achieve better processing time, which allows the
resources to be released early.

- The use of agent to support user mobility allows
disconnected computing (i.e. the user may be disconnected
during the transaction processing). The result of the
transaction will be saved until the user is reconnected. Thus,
the user can turn off the mobile device to conserve energy.

- Simplified local transaction management because of the
global order is enforced through out the hierarchy.

This paper is organized into six sections. Section II

provides background on transaction management and mobile
MDBS. Some related works are described in section III.
Section IV details our AT3M algorithm, whereas simulation
and its results are presented in section V. Finally, section VI
concludes the paper and suggests some possible future works.

II. BACKGROUND

Transaction management involves scheduling transactions
and interleaving reads and writes operations from various
transactions, while leaving the database in a consistent state.
As noted in the literature, in order to maintain database
consistency and reliability, the transaction management must
maintain ACID properties; Atomicity, Consistency, Isolation,
and Durability.

A. Serializability Theory

Classical issues in transaction management involve the
scheduling of dependent transactions and effects of crashes
resulted from interleaving those transactions. For example,
when two transactions, T1 and T2 are executed concurrently,
serializability requires that the final effect must be equivalent
to their serial schedule, i.e. they are executed serially in
arbitrary order. Transaction management schemes aim to
achieve a schedule that is conflict equivalent to serializable
schedule ─ a schedule that is equivalent to some serial
execution of the transactions [13]. It must be conflict
serializable (i.e. contains the same set of transactions and the
conflicting operations of the committed transactions are in the
same order as the serializable schedule). Several well-known
concurrency control protocols include Two-phase Locking,
Time-Ordering, Multi-Version Timestamp Ordering, and
Serialization Graph Testing for transaction management [11].

B. Mobile Multidatabase

A multidatabase (MDBS) deals with multiple pre-existing
heterogeneous and independent databases. A transaction,
which may be submitted at any participating hosts, may
involve access to several databases. There are two levels of
control ─ two layers of transaction management. At the global
level, each global transaction (GT) is decomposed into several
global subtransactions (GSTs), each of which is to be sent to a
local database to be executed as a local transaction.
Interleaving global transactions results in the interleaving of
subtransactions at the local level. Moreover, the heterogeneity
and autonomy of participating local databases allow them to
conceal the way they interleave the global subtransactions and
local transactions. Thus, several local schedulers now control
the global schedule. Figure 2 shows an abstract view of
mobile multidatabase transaction management mechanism.
 These constraints complicate the transaction management
for MDBS in several ways. First, the global transaction
manager must support various types of concurrency control
schemes used by heterogeneous local databases, without
violating their local autonomy. Second, the global transaction
manager maintains a global history (GH) of the execution
order of global transactions (GTs), while each local
transaction manager maintains a local history (LH) of the
execution order of both local transactions and global
subtransactions executed at the corresponding database [7].

Serializable schedule at local level does not always
guarantee serializability at global level. In addition, only
conflicts between global transactions (GTs) are visible to the

Fig. 1. Sample Schema Hierarchy with summarization of selected terms [10].

> Paper #29124 <

3

global transaction manager ─ direct conflict [5]. However, the
global schedule is generated from the local schedules of
participating databases. Therefore, it is possible that two
global transactions, which otherwise do not conflict, conflict
over local transactions, namely indirect conflict which is not
visible at the global level.

As a result, multidatabase serializable schedule must
preserve the following serializability rules [5].
1. Every local history (LH) is conflict serializable.
2. For two global transactions GTi and GTj, if an operation

of GTi precedes an operation of GTj in one LH, all
operations of GTi must precede any operation of GTj in
all LHs.

Some examples of transaction management algorithms for
MDBS include Site Graph Method [17], and the Forced Local
Conflict Method [3].

 The application of mobile technology and demands to
access the information anytime, anywhere has motivated the
development of mobile multidatabases (e.g., the mobile data
access systems (MDAS)). In this platform, clients could
submit transactions to self-autonomous, heterogeneous, and
potentially mobile databases using wireless connection.
Mobility brings out new issues and new challenges in the
design of transaction management protocols as mentioned in
section I. In this work, we focus on user mobility.

III. RELATED WORK

Previous works on transaction management for mobile
multidatabase attempted to address some of the challenges in a
mobile environment without drastic performance degradation.

Pre-Serialization (PS) [12] is an optimistic approach, which
allows global transactions to build their serialization order
before completing their executions. The PS protocol
decomposes global transactions into vital and non-vital
subtransactions. When the vital portion is completed, all the
vital subtransactions are allowed to commit, the transaction is

toggled, and the resources are released. As noted before, the
PS protocol is an optimistic approach and hence, it checks for
conflict after transaction is committed. Consequently, it could
result in cascading aborts. However, the protocol assumes that
all transactions are compensatable, which makes the overhead
from cascading aborts small. PS was also designed to handle
disconnection. However, it is assumed that disconnections are
predictable. Our approach allows non-compensatable
transactions and unpredictable disconnections.

The V-Locking protocol [5] uses a global locking scheme
with 2PL along with the wait-for-graph scenario to enforce
serializability in a hierarchical fashion. Similar to our work, it
exploits the structure of the summary schema model (SSM).
The submission of global subtransactions to LDBs is delayed
until a lock is granted. A more conservative approach uses this
information to delay global operations until a global lock is
obtained. As with other lock-based schemes, v-locking
algorithm may suffer from deadlocks. Thus, the information in
the global locking table is used to create a global wait-for-
graph to detect or prevent global deadlocks. Nonetheless, it is
more difficult to detect and prevent potential deadlocks
resulted from indirect conflicts because the status of the locks
at LDBs is not visible to GTM. The problem can be resolved
by adding site information to the global locking tables and
constructing implied wait-for-graph which can detect all
potential deadlocks, including false deadlocks. Some
optimizations have been presented to reduce the number of
false deadlocks. The need to wait for a global lock for each
operation in the global transaction before the global
subtransaction can send that operation down to the local level
affects the processing time. V-locking also requires
acknowledgement from local level to progress the global
transaction, leading to a lot of communication messages.
Lastly, false deadlocks would result in excessive global
restarts. Our approach avoids these shortcomings; as our
experimental results will show, AT3M outperforms the V-
locking approach.

Other related work concerns primarily with database
mobility. A correctness criterion called Mobile Semantic
Serializability [1,2] was proposed for mobile database
transaction management in ad hoc networks. A mobile MDBS
is viewed as a collection of disjoint sets objects, each of which
represents a single mobile database and is a semantic unit
(SU). Objects in different SUs are independent. A transaction
is modeled as a sequence of modules; each of which consists
of operations on the objects in only one SU and is an atomic
unit of the transaction. Semantic Serializability is maintained
when the local schedule is serializable and there is no
interleaving within each module. However, the authors did not
detail how to guarantee serializability if there is no in-module
interleaving. This work claimed that it achieved better inter-
transaction parallelism but it did not provide any experimental
results or performance evaluation. Another scheme, Multi-
check out Timestamp Ordering Technique [21] was proposed
for distributed replicated database where nodes of mobile
databases are peers and can be replicated. The scheme handles

Fig. 2. Mobile Multidatabase System consists of two levels.

> Paper #29124 <

4

only planned disconnections of the mobile database nodes. It
did not address heterogeneity of the databases either.

IV. AGENT-BASED TRANSACTION MANAGEMENT FOR

MOBILE MDBS (AT3M)

In the context of mobile multidatabase system, transaction
management faces two major challenges: i) It must conform to
the two multidatabase serializability rules mentioned in
section II.B, and ii) Its design must take intermittent network
connectivity, reducing message traffic, and conserving energy
into consideration.

We propose an agent-based mobile multidatabase
transaction management scheme (AT3M). Our approach
addresses the first challenge by using a time-stamp based
ordering for global transactions. The second challenge is
alleviated by taking advantage of the agent-oriented
programming paradigm. An agent is created to act on behalf
of each global transaction, making local decision without user
intervention when performing transaction management tasks.
Pessimistic approach is chosen to resolve conflicts before the
actual execution of the transactions in order to avoid
cascading aborts of the global transactions. Agents
representing global transactions cooperate to agree on the
serialization order to be used at the local level. When a global
transaction is completed, the result is delivered to the user.
When the mobile client is disconnected, the result of the
transaction is not lost but will be stored and delivered to the
user when it is reconnected.

A. Assumptions

- The Summary Schema Model (SSM) described in section I
is utilized as the underlying MDBS platform.

- Each global transaction is decomposed into global
subtransactions by using the query resolution process
defined by the SSM [20].

- Local databases are in fixed network and receive

transactions from both static and mobile clients.
- Each global transaction has only one subtransaction

submitted to a local database.
- Each local database ensures local serializability and

resolves local deadlocks.

B. System Design and Architecture

Our SSM-based multidatabase system has a hierarchical
structure consisting of several levels of Summary Schema
Nodes (SSNs) built on the top of the local nodes which are
local databases. The interaction between the node and other
external entities is performed through a stationary agent
residing in the node called NodeManager. Each SSN
maintains a Global Order Table, which keeps the order
information of the global subtransactions (GSTs) with which
it is involved during the transaction resolution process. The
order of GSTs in the global order table reflects the global
schedule seen by the SSN. The order information includes
GST’s ID, timestamp, and status on whether it has entered the
prepared-to-commit stage. The status at the lowest SSNs also
records whether the GST has been submitted to the LDB.
Figure 3 provides the overview of the architecture of the
transaction management over SSM.

When a user submits a global transaction (GT) to the
system, at any node, a GTAgent is created to act on behalf of
that GT. As part of the transaction resolution process, based
on semantic information captured by the summary schema, the
GTAgent is launched to the designated Global Transaction
Coordinator (GTC). A GTC is recognized as the lowest SSN,
which semantically contains related information needed by the
GT. For example, in Fig. 3, assume that GT1 is submitted at
node 1.A and will be executed in LDB2, LDB3 and LDB4;
the GTC of GT1 would be node 1.A. The GTC is where the
GTAgent starts to resolve (decompose) the GT. The resulting
global subtransactions (GSTs) are also represented by agents,
called GSTAgent, which are dispatched by the GTAgent to
the lower SSNs. Each GSTAgent is tagged with the ID of the
LDB at which its GST will be executed. In this example, the
resulting GSTAgents will travel from node 1.A to LDB2
through node 2.B and 3.B, to LDB3 through node 2.B and
3.C, and to LDB4 through node 2.C and 3.D.

Conflicts between global subtransactions are resolved
during their propagation down to the local level in accordance
with the following timestamp ordering rules.
1. Each GT is uniquely identified by the ID of the SSN that is

its GTC and the time at which it is resolved.
2. When a GT is resolved at a GTC, all of the global

subtransactions (GST) represented by GSTAgents will have
the same timestamp from the GTC upon their creation.

3. The NodeManager at the Summary Schema Node (SSN)
assigns a timestamp to the GST on its arrival at the node. At
each SSN, GSTs of the same GT will have the same
timestamp although they arrive at the different time.

4. When each GST is given the timestamp, an entry for it is
inserted to the global order table. Then, the GSTAgent will
be given the global order, which is an ordered list of the ID

Fig. 3. Transaction management over SSM

(LDBS = Local Database Management System, TM = Transaction Manager).

> Paper #29124 <

5

of all GSTs preceding it in the global order table. The
GSTAgent will carry this order information to the next SSN
it will visit. The current SSN determines the next SSN for
the GSTAgent.

5. When the GSTAgent arrives at the next SSN, the
information in the global order it is carrying can be included
in the global order table of the next SSN. By this means, the
global order information carried by one GSTAgent can be
transferred to another GSTAgent that arrives the SSN after
it via the SSN’s global order table. With this knowledge, if
GSTAgenti arrives at the SSN at level k before GSTAgentj;
thus, has smaller timestamp and results in the global order
GSTi  GSTj; but GSTAgentj arrives at the next SSN at
level k+1 (which GSTAgenti must also visit) before
GSTAgenti, it will wait for GSTAgenti before being
assigned a new timestamp and inserted to the global order
table to preserve the global order GSTi  GSTj. Note that
the Global Order carried by each GSTAgent becomes more
specific to the target LDB as it moves closer to the data.
Since each SSN issues timestamp value independently, time

synchronization is not a concern. As the global serialization
order is determined before the subtransactions are actually
executed at the local databases, the global subtransactions that
arrive the local databases are global conflict-free if they
reserve the global serialization order agreed during the
transaction resolution.

From our running example using Fig. 3, the following
scenario illustrates our algorithm.
- GTAgent1 representing GT1 dispatches GSTAgent1L2,

GSTAgent1L3 and GSTAgent1L4 to LDB2, LDB3 and
LDB4 respectively. Each of which is given the same
timestamp from node 1.A.

- GSTAgent1L2 and GSTAgent1L3 migrate to node 2.B,
where as GSTAgent1L4 migrates to node 2.C.

- Either GSTAgent1L2 or GSTAgent1L3 that arrives at node
2.B before the other will add both GST1L2 and GST1L3 to
the global order table at 2.B. Both are given the same
timestamp, say TS2B1. If there is no other entry prior to their
entries in the global order table, the global order given back
to them would contain only their own ID.

- Assume another global transaction GT2 having node 2.B as
its GTC. Its GTAgent2 dispatches GSTAgent2L2 to LDB2
and GSTAgent2L3 to LDB3. Both GSTAgents are given
the same timestamp from node 2.B, say TS2B2 (>TS2B1).

- On the creation of GSTAgent2L2, the NodeManager at
node 2.B observes that its next SSN will be the same SSN
as GSTAgent1L2’s and then gives global order
GST1L2GST2L2 to it.

- Both GSTAgent1L2 and GSTAgent2L2 travel to node 3.B.
If GSTAgent2L2 arrives node 3.B before GSTAgent1L2
and gives its global order (GST1L2GST2L2) to the
NodeManager to merge to the existing global order table at
node 3.B. As it is shown in the global order that GST1L2
comes before GST2L2, the GSTAgent2L2 will have to wait
until GSTAgent1L2 arrives, adds GST1L2 to the global
order at the node, and receives its timestamp, say TS3B1.

Then, GST2L2 would be added to the global order after
GST1L2, and GSTAgent2L2 would receive TS3B2 (>TS3B1)
to preserve global order GST1L2GST2L2. The same
scheme occurs at node 3.C at which GST1AgentS3 and
GST2AgentS3 would visit to preserve the global order
GST1L2GST2L2.

At the local level, NodeManager at each LDB will ensure that
the defined global order is respected at each local database.
We proposed three different approaches to work with LDBs
with different concurrency control schemes.

1. Timestamp-ordering: As the order in which GSTs must

execute is defined by the timestamps assigned to them at the
global level, LDBs using timestamp ordering as their
concurrency control scheme can directly utilize the existing
timestamps. NodeManager maintains the LDB’ global
schedule. When a GST agent arrives, the global order
carried by the agent is merged to the existing global
schedule. The NodeManager guarantees to submit GSTs to
the local database in the global order. If the arrival of GSTj
results in global schedule GSTiGSTj but GSTi has not
been submitted to the NodeManager, it will wait for the
arrival of GSTi and submit GSTi to the LDB before GSTj, to
ensure that GSTi always receives lower timestamp from the
local transaction manager than GSTj.

2. Rigorous Concurrency Control: It has been shown that

when the LDBs produce rigorous schedules or at least
recoverable schedule, only maintaining uniform order in
which the GSTs commits is sufficient to ensure global
serializability [18,19]. The strict two-phase locking protocol
(S2PL), which is used in most systems also produces
rigorous schedule. An example of the scheme utilizing this
property is Implicit Tick Method (ITM) [3]. ITM observes
the order which the GSTs enter prepare-to-commit state. If
the order produced by all LDBs is not identical, it will
restart all involved global transactions. Nevertheless, in our
approach, all NodeManagers already agree on the global
order. Thus, when the NodeManager receives a prepare-to-
commit from the GST, it can immediately determine
whether the prepare-to-commit operation of that particular
transaction would violate the global order. If the GST
performing prepare-to-commit is not the next GST that
should prepare-to-commit based on the global order hold by
the NodeManager, it will locally restart only that GST.
Although this might be an unnecessary restart, it is less
expensive than restarting the entire GT. To restart the GST
with wrong prepare-to-commit order, say GSTwrong, the
NodeManager will hold the GSTwrong for a threshold period
of time proportional to the number of GSTs which should
enter prepare-to-commit state before the GSTwrong, say its
predecessors. If all of the predecessors of the GSTwrong have
finished before the threshold period ends, the GSTwrong will
prepare-to-commit after them; otherwise, it is assumed that
the GSTwrong indirectly conflict with its predecessors and
should be aborted and restarted. It is also possible that a

> Paper #29124 <

6

large number of GSTs are ready to prepare-to-commit but
are waiting for a single GST. In this case, when the number
of these GSTs reaches a threshold value, the GSTAgent of
the blocking GST would return to its GTAgent and request
for a global restart. Thus, other waiting global GSTs can
process to prepare-to-commit.

3. Other Concurrency Control Schemes: For fully autonomous

LDBs whose local concurrency control scheme is globally
unknown, forced conflict method is a practical solution [3].
It applies take-a-ticket scheme to force additional conflict,
which reflects the serialization order based on the ticket’s
value. Provided that every local transaction manager always
produces serializable schedule, by controlling the order in
which the GT take a ticket, the NodeManager is able to
reserve the defined global serialization order.

The global order is always respected even though the global
transactions do not conflict. Indirect conflicts which are
invisible to the global level will not affect the correctness of
our algorithm. Thus, our approach can address both direct and
indirect conflicts. In any of the three aforementioned
approaches, if the local transaction manager aborts one GST,
its corresponding GSTAgent will inform its GTAgent to abort
its other GSTs to preserve atomicity. The GT will be removed
from the global order, while other succeeding GTs in the
schedule remain unaffected. The aborted GT will be re-
submitted and obtain a new position in the global order.

C. Proof of Correctness

 Lemma1: Global order which the NodeManager receives
from the GST always synchronizes with the global order it
maintains.
 Proof: Proofing by contradiction, let the global order at the
NodeManager be GSTiGSTj, which depicts that GSTi
receives smaller timestamp than GSTj at the SSN above the
NodeManager and at the NodeManager. If the NodeManager
later receives a global order contains GSTiGSTkGSTj
from the GST, it means that GSTk arrives the SSN above the
NodeManager after GSTj (otherwise, it should have included
in its current global order). However, GSTk has lower
timestamps than GSTj; thus, violates timestamp ordering rule
of the summary schema node. Thus, case i) Cannot occur. ii)
Let the global order at the NodeManager be GSTiGSTj.
Later, the NodeManager receives a global order contains
GSTjGSTi from GST. It means that there are at least two
GSTs receive different global order from the same SSN. This
case cannot happen because they received information from
the same global order. The proposed scheme does not violate
local autonomy because it does not require any modification
to the local systems.

Lemma2: When local transaction manager uses timestamp
ordering concurrency control protocol, by submitting GSTs to
the local transaction manager in the same order as the global
order, the NodeManager maintains global serializability.

 Proof: For any timestamp order based local transaction
manager, the serialization order of the transactions submitted
to it is determined by the timestamps the transactions received
at upon their arrivals. Thus, when the GST are submitted to
LDB in the same order as the common global order, the local
serialization order of the LDB is the same as the global order,
which in turn depicts the global serialization order.

Lemma3: When local transaction manager uses rigorous
concurrency control scheme, NodeManager guarantees to
maintain global serializability.

Proof: Based on the proof that the global serialization
order under rigorous concurrency control is depicted by the
order which the GSTs commit. Each NodeManager ensures
that order conforms to the global order maintained by all other
NodeManagers. If the global order contains GSTiGSTj, the
NodeManager ensure that GSTi reports prepare-to-commit and
is committed before GSTj. Thus, the NodeManagers produce
local history that is synchronized with the global order,
leading to global serializable schedule.

Lemma4: When local transaction manager uses any
concurrency control protocol, NodeManager guarantees to
maintain global serializability using Forced Conflict Method.
 Proof: Forced conflict method guarantees that local history
produced by the local transaction manager follows the order
of the ticket value. The NodeManager issues the ticket to the
GSTs according to the commonly agreed on global order.
Therefore, it produces local history that is synchronized with
the global order, preserving global serializability.

V. PERFORMANCE EVALUATION

The proposed system was simulated and compared against
the V-Locking algorithm because i) To our knowledge, it is
the most recent concurrency control scheme for mobile
MDBS which local databases in fixed network and ii) It has
been shown to outperform Potential Conflict Graph (PCG),
forced conflict, and site-graph algorithm [5]. The simulator
was developed using SimJava 2.0 [15]. The mobile
multidatabase system consists of 7 local databases. Each of
which contains 100 data items, 20 items are hot-spot, which
are more likely to be accessed. In our simulation, if the GT is
aborted because of conflict, it is automatically restarted. When
a GT or LT is completed, a new GT or LT is created.

A. Simulation Parameters

Each simulation runs for 1000 time units. The global
system and local system parameters used in the simulation are
presented in table II and III respectively. We chose to simulate
rigorous concurrency control as it is the most commonly used.
Most of the simulation parameters we used are identical to
those used in the simulation of the V-locking algorithm [5],
except that we allowed more operations per GT and included
hot spot. Parameters for agents were from measurements using
IBM’s Aglets agent platform.

> Paper #29124 <

7

B. Simulation Results

We use processing time of the transaction and the number
of communication messages to compare the performance of
AT3M and V-Locking algorithms. The processing time is
measured from the time the user submits the transaction to the
system to the time the user receives the result, which depicts
the system performance perceived by the user. The number of
communication messages implies the bandwidth requirement
of the system. First, both systems process only global
transactions under different probabilities of read-only
transactions. As two read-only transactions do not conflict,
lower probability of read-only transaction depicts higher
probability of conflicts. As shown in figure 4, the processing
time of AT3M algorithm is about half of the V-Locking
algorithm because i) The AT3M does not have to wait for
global locks at each SSN level, ii) GSTAgents enable parallel
processing of all global subtransactions, and iii) GSTAgents
and NodeManager try to locally restart the potentially conflict
global subtransaction before requesting for global restart.
Moreover, the processing time of AT3M across various
probabilities of read-only transaction is more stable. Since

AT3M always organizes the global subtransactions into the
commonly agreed on global order regardless of the degree of
conflicts between the global transactions, the change in
probability of read-only transactions only impacts the
processing time at the local databases, not at the global level.

Figure 5 describes the average number of messages in the
system per global transaction. With AT3M algorithm, each
GSTAgent is responsible for each global subtransaction. It
contacts the GTAgent only when prepare-to-commit, after
successful commit, and to request for global restart. In
contrast, V-Locking algorithm requires explicit
acknowledgement from the local database back to the GTC
after each operation. Therefore, number of communication
messages under AT3M is significantly lower than V-Locking.
Although the V-Locking algorithm provides options to send
acknowledgement only after each write operation or after

TABLE II
GLOBAL SYSTEM PARAMETERS

Global System Parameter
Default
Value

The maximum number of active global transactions in
the system

10

Maximum number of operations that a GT contains 35
Minimum number of operations that a global transaction
contains

1

SSN’s CPU time 0.005 s
SSN’s IO time 0.01 s
Mobile device’s CPU time 0.005 s
Mobile device’s IO time 0.01 s
Mobile agent’s dispatch delay 0.016 s
Mobile agent’s migration delay 0.016 s
Probability of strong wireless connection 0.5
Probability of weak wireless connection 0.3
Probability of wireless disconnection 0.2
Communication message per operation 2
Communication delay during strong wireless connection 0.1-0.3 s
Communication delay during weak wireless connection 0.3-3 s
Communication delay during wireless disconnection 30-120 s

TABLE III
LOCAL SYSTEM PARAMETERS

Local System Parameter
Default
Value

Number of data objects per local database 100
Ratio of hotspot size 0.2
Probability that a local transaction accesses the
database’s hotspot

0.5

Local system’s CPU time 0.005 s
Local System’s IO time 0.01 s
Maximum disk access time 0.016 s
Minimum disk access time 0.008 s
Communication message per operation 2
Communication delay of wired connection 0.1-0.3 s

0

10

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6

Probability of Read-Only Transactions

A
ve

ra
g

e
P

ro
ce

ss
in

g
 T

im
e

(s
.)

AT3M

V-Locking

Fig. 4 Average processing time of global transactions.

0

10

20

30

40

50

60

0.2 0.4 0.6

LT:GT Ratio

P
ro

c
e

s
s

in
g

 T
im

e
 (

s
.)

AT3M's GT

V-Locking's GT

AT3M's LT

V-Locking's LT

Fig. 6. Processing time of global transaction (GT) and local transaction (LT).

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6

Probability of Read-Only Transactions
M

e
s

s
a

g
e

s
/T

ra
n

s
a

c
ti

o
n

AT3M

V-Locking

Fig. 5 Total messages per global transaction.

> Paper #29124 <

8

commit/abort of the global subtransaction, such alternatives
would be traded off with higher degree of fault deadlocks
which would degrade other performance metrics.

Figure 6 illustrates the impact of changing the local to
global transaction ratio (LT:GT), which shows the extent to
which the global users would be affected from the load at the
LDB. AT3M still give better processing time for global users.
It is shown that the processing time of the local transaction is
not affected by the LT:GT ratio. As the local transactions
access only single LDB using wired connection, they always
have shorter processing time than the global transactions.

VI. CONCLUSION AND FUTURE DIRECTIONS

A. Conclusion

This paper proposed AT3M as a new approach for
transaction management in mobile multidatabase. It introduces
the use of agent technology. Each global transaction is carried
out by an agent, which dispatches child agents representing
the corresponding global subtransactions. The protocol is a
non-locking approach. The global serialization order is
determined before the global subtransactions are submitted to
the local databases. The use of the agents allows fully
distributed transaction management and parallel processing of
all global subtransactions, and also addresses user’s mobility.
From the simulation, the proposed AT3M algorithm provides
better average processing time and lower number of
communication messages than the V-Locking algorithm
which has been designed for the same environment.

B. Future Directions

The current work covers the main functions of transaction
management for mobile multidatabase. There are still a lot of
opportunities to enhance the proposed algorithm. First, the
algorithm can be enhanced to operate under mobile ad hoc
environment, which the local databases are mobile. Second,
the system can use some caching scheme to give better
processing time. Sharing cached information among users
may be performed using the concept of co-operate caching
[4]. Third, the protocol can be improved to handle user’s
migration (i.e. disconnected user who is reconnected to a
different access point).

REFERENCES
[1] A. Brayner, J. A. Filho, Increasing mobile transaction concurrency in

dynamically configurable environments, 25th IEEE International
Conference on Distributed Computing Systems Workshops, 2005.

[2] A. Brayner, F. S.Alencar, A semantic-serializability based fully-
distributed concurrency control mechanism for mobile multi-database
systems, Proceedings 16th International Workshop on Database and
Expert Systems Applications, 2005.

[3] D. Georgakopoulos, M. Rusinkiewicz, A. Sheth, On Serializability of
Multidatabase Transactions Through Forced Local Conflicts, In
Proceedings 7th IEEE International Conference on Data Engineering,
April 1991, Page(s): 314 – 323.

[4] G. Cao, L. Yin, and C. Das, Cooperative Cache-Based Data Access in
Ad Hoc Networks, IEEE Computer, pp. 32-39, Feb. 2004.

[5] J. B. Lim, A. R. Hurson, Transaction processing in mobile,
heterogeneous database systems, IEEE Transactions on Knowledge and
Data Engineering, Volume 14 Issue 6, 2002, Page(s): 1330-1346.

[6] J. B. Lim, A. R. Hurson, K. M. Kavi, Concurrent Data Access in Mobile
Heterogeneous Systems, Proceedings of the 32nd Hawaii International
Conference on System Sciences, Volume Track 8, Jan 1999.

[7] K. Barker, M. T. Ozsu, Concurrent Transaction Execution in
Multidatabase Systems, Computer Software and Applications
Conference, 1990. COMPSAC 90. Proceedings., Fourteenth Annual
International, November 1990, Page(s):282 – 288

[8] K. Segun, A. R. Hurson, A. Spink, A Transaction Processing Model for
the Mobile Data Access System, Proceedings 6th International
Conference on Parallel Computing Technologies, PaCT 2001,
Novosibirsk, Russia, September 3-7, 2001, Lecture Notes in Computer
Science, Volume 2127/2001, Pages: 112-127.

[9] L. D. Fife, L. Gruenwald, Research Issues for Data Communication in
Mobile Ad-Hoc Network Database Systems, SIGMOD Record, Volume
32, No. 2, June 2003.

[10] M. W. Bright, A. R. Hurson, S. H. Pakzad, Automated Resolution of
Semantic Heterogeneity in Multidatabases, ACM Transactions on
Database Systems, Volume 19, No. 2, June 1994, Page(s): 212-253.

[11] P. A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and
Recovery in Database Systems, Addison-Wesley, 1987

[12] R. A. Dirckze, L. Gruenwald, A pre-serialization transaction
management technique for mobile multidatabases, Mobile Networks and
Applications Volume 5 Issue 4, December 2000, Page(s): 311–321

[13] R. Ramakrishnan, J. Gehrke, Database Management Systems, 3rd
Edition, Mc-GrawHill, 2003.

[14] R. Vlach, J. Lana, J. Marek, D. Navara, MDBAS - A Prototype of a
Multidatabase Management System Based on Mobile Agents, SOFSEM
2000, LNCS 1963, Page(s): 440–449

[15] SimJava, Institute for Computing Systems Architecture, University of
Edinburgh, UK
http://www.icsa.inf.ed.ac.uk/research/groups/hase/simjava/

[16] S. K. Madria, B. Bhargava, A Transaction Model to Improve Data
Availability in Mobile Computing, Distributed and Parallel Databases,
Volume 10 Issue 2, September 2001, Pages: 127–160.

[17] Y. Breitbart, A. Silberschatz, Thompson G., An Update Mechanism for
Multidatabase Systems, IEEE Data Engineering Bulletin, Vol.10 No.3,
September 1987, Page(s):12-18.

[18] Y. Breitbart, D. Georgakopoulos, M. Rusinkiewicz, A. Silberschatz,
Rigorous Scheduling in Multidatabase Systems, In Proceedings of the
Workshop on Multidatabases and Semantic Interoperability, October
1990.

[19] Y. Breitbart, D. Georgakopoulos, M. Rusinkiewicz, A. Silberschatz, On
Rigorous Transaction Scheduling, IEEE Transactions on Software
Engineering, Vol.17 No.9, September 1991.

[20] Y. Jiao, A. R. Hurson, Application of mobile agents in mobile data
access systems – a prototype. Journal of Database Management,
Volume 15 Issue 4, 2004, Page(s): 1-24.

[21] Z.T. Abdul-Mehdi, A. B. Mamat, H. Ibrahim, M. Dirs, Multi-Check-Out
Timestamp Order Technique (MCTO) for Planned Disconnections in
Mobile Database, Information and Communication Technologies, 2006.
ICTTA '06, vol.1, 2006 Page(s):491 - 498.

ACKNOLEDGEMENT

Notice: This manuscript has been authored by UT-Battelle, LLC,
under contract DE-AC05-00OR22725 with the US Department of
Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government
purposes.

