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 
Abstract— The requirements to access and manipulate data 
across multiple heterogeneous existing databases and the 
proliferation of mobile technologies have propelled the 
development of mobile multidatabase system (MDBS). In that 
environment, transaction management is not a trivial task due to 
the technological constraints. Agent technology is an evolving 
research area, which has been applied to several application 
domains. This paper proposes an Agent-based Transaction 
Management for Mobile Multidatabase (AT3M) system.  AT3M 
applies static and mobile agents to manage the transaction 
processing in mobile multidatabase system. It enables a fully 
distributed transaction management, accommodates mobility of 
the mobile clients, and allows global subtransactions to process in 
parallel. The proposed algorithm utilizes the hierarchical meta 
data structure of Summary Schema Model (SSM) which captures 
semantic information of data objects in the underlying local 
databases at different levels of abstractions. It is shown by 
simulation that AT3M suits well in mobile multidatabase 
environment and outperforms the existing V-Locking algorithm 
designed for the same environment in many aspects. 
 

Index Terms— Computer networks, Concurrency control, 
Database concurrency operations, Database systems, Mobile 
communication, Mobile agent, Parallel processing, Wireless LAN 
 

I. INTRODUCTION 

continuous increase in amount of data and information 
overload has led to difficulties in exploring, sharing and 

manipulating data, and extracting underlying useful 
information from it. To overcome these problems, various 
database technologies and architectures have been developed 
and adjusted for various requirements, ranging from 
homogeneous centralized database, distributed database, 
heterogeneous databases (multidatabases -- MDBS) to mobile 
MDBS. Transaction management is known to be a core 
functionality of every database management system (DBMS), 
to achieve high system utilization and data integrity by 
handling many database transactions concurrently. Such 
functionality becomes more complicated in MDBS 
environment because of the following constraints: 
- Local databases are heterogeneous (i.e. having different 

data representation and concurrency control scheme). 
- Local databases are autonomous and do not reveal local 

transaction execution schedule to the global level. 

 
 

Furthermore, when user mobility comes into the picture, it 
introduces additional constraints, which make transaction 
management even more complex. 
- Network connectivity is intermittent and unreliable. 
- Power constraints due to limited battery power. 
- Low bandwidth and disconnections may make mobile 

global transactions long-lived transactions (LLTs), which 
would hold resources for longer period of time. 
The existing solutions have several shortcomings such as 

allowing cascading aborts, generating a lot of communication 
messages and consuming long processing time. Some 
solutions have restricted assumptions; for example, global 
transactions are compensatable, and disconnections are 
planned or predictable. 

We propose an Agent-based Transaction Management 
scheme for Mobile Multidatabase systems (AT3M) that 
addresses the aforementioned challenges and the deficiencies 
of the existing solutions.  

Table I is a quick reference to the various acronyms used in 
the rest of our discussion. 

Our approach uses agent-oriented design paradigm. An 
agent is a software program and a mobile agent can halt its 
execution at one host, migrate to another host in a network, 
and resumes its execution.  We chose the Summary Schema 
Model (SSM) [10] as our MDBS organization model. It is 
semantic based hierarchical structure where the leaf nodes are 
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A 
TABLE I 

ACRONYMS 

Acronym Description 

GT Global transaction submitted to the global MDBS 
GTAgent Agent representing a global transaction 
GTC Global Transaction Coordinator; the GTC for a 

global transaction is the node at which that 
particular global transaction is resolved. 

GST Global subtransaction 
GST<x>L<y> A global subtransaction of global transaction x 

which will be executed at local database y 
GSTAgent<x>L<y> Agent representing a global subtransaction of 

global transaction x which will be executed at local 
database y  

LDB Local database participating in the MDBS 
LT Local transaction submitted to a local database 
MDBS Multidatabase system 
SSM Summary schema model, Semantic based 

hierarchical structure used as our MDBS 
organization model 

SSN Summary schema node, node participating in the 
summary schema model 
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local databases (local nodes) and other nodes are summary 
schema nodes (SSNs). Local nodes join the MDBS federation 
by publishing their local schema. In order to reduce the 
amount of information held at high level SSNs, increasingly 
abstract view of the data, known as summary schema, is 
generated by summarizing the schemas of its child nodes. The 
relationships between terms in the SSM include synonyms, 
hypernyms (words with more general meaning) and hyponyms 
(words with more specific meaning), provided by a thesaurus. 
A sample schema hierarchy presented in the original paper of 
the SSM is shown in Fig. 1. In this example, the term “Wage” 
and “Salary” in node A and B are summarized to the 
hypernym term “Earnings” at node 4.A. 

Our major contributions are highlighted as follows: 
- Non-lock based scheme prevents the need to wait for global 

locks; thus, shorten the global transaction’s processing time. 
- No cascade abort. 
- The use of autonomous agents allows parallel processing of 

global subtransactions. The capability of the agents to make 
local decision avoids acknowledgement messages. As a 
result, the scheme consumes less network bandwidth and 
can achieve better processing time, which allows the 
resources to be released early. 

- The use of agent to support user mobility allows 
disconnected computing (i.e. the user may be disconnected 
during the transaction processing). The result of the 
transaction will be saved until the user is reconnected. Thus, 
the user can turn off the mobile device to conserve energy.  

- Simplified local transaction management because of the 
global order is enforced through out the hierarchy. 
 
This paper is organized into six sections. Section II 

provides background on transaction management and mobile 
MDBS. Some related works are described in section III. 
Section IV details our AT3M algorithm, whereas simulation 
and its results are presented in section V. Finally, section VI 
concludes the paper and suggests some possible future works.  
 

II. BACKGROUND 

Transaction management involves scheduling transactions 
and interleaving reads and writes operations from various 
transactions, while leaving the database in a consistent state. 
As noted in the literature, in order to maintain database 
consistency and reliability, the transaction management must 
maintain ACID properties; Atomicity, Consistency, Isolation, 
and Durability. 

A. Serializability Theory 

Classical issues in transaction management involve the 
scheduling of dependent transactions and effects of crashes 
resulted from interleaving those transactions. For example, 
when two transactions, T1 and T2 are executed concurrently, 
serializability requires that the final effect must be equivalent 
to their serial schedule, i.e. they are executed serially in 
arbitrary order. Transaction management schemes aim to 
achieve a schedule that is conflict equivalent to serializable 
schedule ─ a schedule that is equivalent to some serial 
execution of the transactions [13]. It must be conflict 
serializable (i.e. contains the same set of transactions and the 
conflicting operations of the committed transactions are in the 
same order as the serializable schedule). Several well-known 
concurrency control protocols include Two-phase Locking, 
Time-Ordering, Multi-Version Timestamp Ordering, and 
Serialization Graph Testing for transaction management [11]. 

B. Mobile Multidatabase 

A multidatabase (MDBS) deals with multiple pre-existing 
heterogeneous and independent databases. A transaction, 
which may be submitted at any participating hosts, may 
involve access to several databases. There are two levels of 
control ─ two layers of transaction management. At the global 
level, each global transaction (GT) is decomposed into several 
global subtransactions (GSTs), each of which is to be sent to a 
local database to be executed as a local transaction. 
Interleaving global transactions results in the interleaving of 
subtransactions at the local level.  Moreover, the heterogeneity 
and autonomy of participating local databases allow them to 
conceal the way they interleave the global subtransactions and 
local transactions. Thus, several local schedulers now control 
the global schedule. Figure 2 shows an abstract view of 
mobile multidatabase transaction management mechanism.  
 These constraints complicate the transaction management 
for MDBS in several ways. First, the global transaction 
manager must support various types of concurrency control 
schemes used by heterogeneous local databases, without 
violating their local autonomy. Second, the global transaction 
manager maintains a global history (GH) of the execution 
order of global transactions (GTs), while each local 
transaction manager maintains a local history (LH) of the 
execution order of both local transactions and global 
subtransactions executed at the corresponding database [7]. 

Serializable schedule at local level does not always 
guarantee serializability at global level.  In addition, only 
conflicts between global transactions (GTs) are visible to the 

 
Fig. 1. Sample Schema Hierarchy with summarization of selected terms [10].
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global transaction manager ─ direct conflict [5]. However, the 
global schedule is generated from the local schedules of 
participating databases. Therefore, it is possible that two 
global transactions, which otherwise do not conflict, conflict 
over local transactions, namely indirect conflict which is not 
visible at the global level.  

As a result, multidatabase serializable schedule must 
preserve the following serializability rules [5]. 
1. Every local history (LH) is conflict serializable. 
2. For two global transactions GTi and GTj, if an operation 

of GTi precedes an operation of GTj in one LH, all 
operations of GTi must precede any operation of GTj in 
all LHs. 

Some examples of transaction management algorithms for 
MDBS include Site Graph Method [17], and the Forced Local 
Conflict Method [3]. 

 The application of mobile technology and demands to 
access the information anytime, anywhere has motivated the 
development of mobile multidatabases (e.g., the mobile data 
access systems (MDAS)). In this platform, clients could 
submit transactions to self-autonomous, heterogeneous, and 
potentially mobile databases using wireless connection. 
Mobility brings out new issues and new challenges in the 
design of transaction management protocols as mentioned in 
section I. In this work, we focus on user mobility. 

 

III. RELATED WORK 

Previous works on transaction management for mobile 
multidatabase attempted to address some of the challenges in a 
mobile environment without drastic performance degradation. 

Pre-Serialization (PS) [12] is an optimistic approach, which 
allows global transactions to build their serialization order 
before completing their executions. The PS protocol 
decomposes global transactions into vital and non-vital 
subtransactions. When the vital portion is completed, all the 
vital subtransactions are allowed to commit, the transaction is 

toggled, and the resources are released. As noted before, the 
PS protocol is an optimistic approach and hence, it checks for 
conflict after transaction is committed. Consequently, it could 
result in cascading aborts. However, the protocol assumes that 
all transactions are compensatable, which makes the overhead 
from cascading aborts small. PS was also designed to handle 
disconnection. However, it is assumed that disconnections are 
predictable. Our approach allows non-compensatable 
transactions and unpredictable disconnections. 

The V-Locking protocol [5] uses a global locking scheme 
with 2PL along with the wait-for-graph scenario to enforce 
serializability in a hierarchical fashion. Similar to our work, it 
exploits the structure of the summary schema model (SSM). 
The submission of global subtransactions to LDBs is delayed 
until a lock is granted. A more conservative approach uses this 
information to delay global operations until a global lock is 
obtained. As with other lock-based schemes, v-locking 
algorithm may suffer from deadlocks. Thus, the information in 
the global locking table is used to create a global wait-for-
graph to detect or prevent global deadlocks.  Nonetheless, it is 
more difficult to detect and prevent potential deadlocks 
resulted from indirect conflicts because the status of the locks 
at LDBs is not visible to GTM. The problem can be resolved 
by adding site information to the global locking tables and 
constructing implied wait-for-graph which can detect all 
potential deadlocks, including false deadlocks. Some 
optimizations have been presented to reduce the number of 
false deadlocks.  The need to wait for a global lock for each 
operation in the global transaction before the global 
subtransaction can send that operation down to the local level 
affects the processing time. V-locking also requires 
acknowledgement from local level to progress the global 
transaction, leading to a lot of communication messages. 
Lastly, false deadlocks would result in excessive global 
restarts. Our approach avoids these shortcomings; as our 
experimental results will show, AT3M outperforms the V-
locking approach. 

Other related work concerns primarily with database 
mobility. A correctness criterion called Mobile Semantic 
Serializability [1,2] was proposed for mobile database 
transaction management in ad hoc networks. A mobile MDBS 
is viewed as a collection of disjoint sets objects, each of which 
represents a single mobile database and is a semantic unit 
(SU). Objects in different SUs are independent. A transaction 
is modeled as a sequence of modules; each of which consists 
of operations on the objects in only one SU and is an atomic 
unit of the transaction. Semantic Serializability is maintained 
when the local schedule is serializable and there is no 
interleaving within each module. However, the authors did not 
detail how to guarantee serializability if there is no in-module 
interleaving. This work claimed that it achieved better inter-
transaction parallelism but it did not provide any experimental 
results or performance evaluation. Another scheme, Multi-
check out Timestamp Ordering Technique [21] was proposed 
for distributed replicated database where nodes of mobile 
databases are peers and can be replicated. The scheme handles 

 
Fig. 2. Mobile Multidatabase System consists of two levels.  
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only planned disconnections of the mobile database nodes. It 
did not address heterogeneity of the databases either. 

 

IV. AGENT-BASED TRANSACTION MANAGEMENT FOR 

MOBILE MDBS (AT3M) 

In the context of mobile multidatabase system, transaction 
management faces two major challenges: i) It must conform to 
the two multidatabase serializability rules mentioned in 
section II.B, and ii) Its design must take intermittent network 
connectivity, reducing message traffic, and conserving energy 
into consideration.  

We propose an agent-based mobile multidatabase 
transaction management scheme (AT3M). Our approach 
addresses the first challenge by using a time-stamp based 
ordering for global transactions. The second challenge is 
alleviated by taking advantage of the agent-oriented 
programming paradigm. An agent is created to act on behalf 
of each global transaction, making local decision without user 
intervention when performing transaction management tasks. 
Pessimistic approach is chosen to resolve conflicts before the 
actual execution of the transactions in order to avoid 
cascading aborts of the global transactions. Agents 
representing global transactions cooperate to agree on the 
serialization order to be used at the local level. When a global 
transaction is completed, the result is delivered to the user. 
When the mobile client is disconnected, the result of the 
transaction is not lost but will be stored and delivered to the 
user when it is reconnected. 

A. Assumptions 

- The Summary Schema Model (SSM) described in section I 
is utilized as the underlying MDBS platform. 

- Each global transaction is decomposed into global 
subtransactions by using the query resolution process 
defined by the SSM [20]. 

- Local databases are in fixed network and receive 

transactions from both static and mobile clients.  
- Each global transaction has only one subtransaction 

submitted to a local database. 
- Each local database ensures local serializability and 

resolves local deadlocks. 

B. System Design and Architecture 

Our SSM-based multidatabase system has a hierarchical 
structure consisting of several levels of Summary Schema 
Nodes (SSNs) built on the top of the local nodes which are 
local databases. The interaction between the node and other 
external entities is performed through a stationary agent 
residing in the node called NodeManager. Each SSN 
maintains a Global Order Table, which keeps the order 
information of the global subtransactions (GSTs) with which 
it is involved during the transaction resolution process. The 
order of GSTs in the global order table reflects the global 
schedule seen by the SSN. The order information includes 
GST’s ID, timestamp, and status on whether it has entered the 
prepared-to-commit stage. The status at the lowest SSNs also 
records whether the GST has been submitted to the LDB. 
Figure 3 provides the overview of the architecture of the 
transaction management over SSM. 

When a user submits a global transaction (GT) to the 
system, at any node, a GTAgent is created to act on behalf of 
that GT. As part of the transaction resolution process, based 
on semantic information captured by the summary schema, the 
GTAgent is launched to the designated Global Transaction 
Coordinator (GTC). A GTC is recognized as the lowest SSN, 
which semantically contains related information needed by the 
GT. For example, in Fig. 3, assume that GT1 is submitted at 
node 1.A and will be executed in LDB2, LDB3 and LDB4; 
the GTC of GT1 would be node 1.A. The GTC is where the 
GTAgent starts to resolve (decompose) the GT. The resulting 
global subtransactions (GSTs) are also represented by agents, 
called GSTAgent, which are dispatched by the GTAgent to 
the lower SSNs. Each GSTAgent is tagged with the ID of the 
LDB at which its GST will be executed. In this example, the 
resulting GSTAgents will travel from node 1.A to LDB2 
through node 2.B and 3.B, to LDB3 through node 2.B and 
3.C, and to LDB4 through node 2.C and 3.D. 

Conflicts between global subtransactions are resolved 
during their propagation down to the local level in accordance 
with the following timestamp ordering rules. 
1. Each GT is uniquely identified by the ID of the SSN that is 

its GTC and the time at which it is resolved. 
2. When a GT is resolved at a GTC, all of the global 

subtransactions (GST) represented by GSTAgents will have 
the same timestamp from the GTC upon their creation. 

3. The NodeManager at the Summary Schema Node (SSN) 
assigns a timestamp to the GST on its arrival at the node. At 
each SSN, GSTs of the same GT will have the same 
timestamp although they arrive at the different time. 

4. When each GST is given the timestamp, an entry for it is 
inserted to the global order table. Then, the GSTAgent will 
be given the global order, which is an ordered list of the ID 

 
Fig. 3.  Transaction management over SSM 

(LDBS = Local Database Management System, TM = Transaction Manager).
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of all GSTs preceding it in the global order table. The 
GSTAgent will carry this order information to the next SSN 
it will visit. The current SSN determines the next SSN for 
the GSTAgent.  

5. When the GSTAgent arrives at the next SSN, the 
information in the global order it is carrying can be included 
in the global order table of the next SSN. By this means, the 
global order information carried by one GSTAgent can be 
transferred to another GSTAgent that arrives the SSN after 
it via the SSN’s global order table. With this knowledge, if 
GSTAgenti arrives at the SSN at level k before GSTAgentj; 
thus, has smaller timestamp and results in the global order 
GSTi  GSTj; but GSTAgentj arrives at the next SSN at 
level k+1 (which GSTAgenti must also visit) before 
GSTAgenti, it will wait for GSTAgenti before being 
assigned a new timestamp and inserted to the global order 
table to preserve the global order GSTi  GSTj. Note that 
the Global Order carried by each GSTAgent becomes more 
specific to the target LDB as it moves closer to the data. 
Since each SSN issues timestamp value independently, time 

synchronization is not a concern. As the global serialization 
order is determined before the subtransactions are actually 
executed at the local databases, the global subtransactions that 
arrive the local databases are global conflict-free if they 
reserve the global serialization order agreed during the 
transaction resolution. 

From our running example using Fig. 3, the following 
scenario illustrates our algorithm. 
- GTAgent1 representing GT1 dispatches GSTAgent1L2, 

GSTAgent1L3 and GSTAgent1L4 to LDB2, LDB3 and 
LDB4 respectively. Each of which is given the same 
timestamp from node 1.A.  

- GSTAgent1L2 and GSTAgent1L3 migrate to node 2.B, 
where as GSTAgent1L4 migrates to node 2.C. 

- Either GSTAgent1L2 or GSTAgent1L3 that arrives at node 
2.B before the other will add both GST1L2 and GST1L3 to 
the global order table at 2.B. Both are given the same 
timestamp, say TS2B1. If there is no other entry prior to their 
entries in the global order table, the global order given back 
to them would contain only their own ID.  

- Assume another global transaction GT2 having node 2.B as 
its GTC. Its GTAgent2 dispatches GSTAgent2L2 to LDB2 
and GSTAgent2L3 to LDB3. Both GSTAgents are given 
the same timestamp from node 2.B, say TS2B2 (>TS2B1).  

- On the creation of GSTAgent2L2, the NodeManager at 
node 2.B observes that its next SSN will be the same SSN 
as GSTAgent1L2’s and then gives global order 
GST1L2GST2L2 to it.  

- Both GSTAgent1L2 and GSTAgent2L2 travel to node 3.B. 
If GSTAgent2L2 arrives node 3.B before GSTAgent1L2 
and gives its global order (GST1L2GST2L2) to the 
NodeManager to merge to the existing global order table at 
node 3.B. As it is shown in the global order that GST1L2 
comes before GST2L2, the GSTAgent2L2 will have to wait 
until GSTAgent1L2 arrives, adds GST1L2 to the global 
order at the node, and receives its timestamp, say TS3B1. 

Then, GST2L2 would be added to the global order after 
GST1L2, and GSTAgent2L2 would receive TS3B2 (>TS3B1) 
to preserve global order GST1L2GST2L2. The same 
scheme occurs at node 3.C at which GST1AgentS3 and 
GST2AgentS3 would visit to preserve the global order 
GST1L2GST2L2. 

At the local level, NodeManager at each LDB will ensure that 
the defined global order is respected at each local database. 
We proposed three different approaches to work with LDBs 
with different concurrency control schemes. 
 
1. Timestamp-ordering: As the order in which GSTs must 

execute is defined by the timestamps assigned to them at the 
global level, LDBs using timestamp ordering as their 
concurrency control scheme can directly utilize the existing 
timestamps. NodeManager maintains the LDB’ global 
schedule. When a GST agent arrives, the global order 
carried by the agent is merged to the existing global 
schedule. The NodeManager guarantees to submit GSTs to 
the local database in the global order. If the arrival of GSTj 
results in global schedule GSTiGSTj but GSTi has not 
been submitted to the NodeManager, it will wait for the 
arrival of GSTi and submit GSTi to the LDB before GSTj, to 
ensure that GSTi always receives lower timestamp from the 
local transaction manager than GSTj. 

 
2. Rigorous Concurrency Control: It has been shown that 

when the LDBs produce rigorous schedules or at least 
recoverable schedule, only maintaining uniform order in 
which the GSTs commits is sufficient to ensure global 
serializability [18,19]. The strict two-phase locking protocol 
(S2PL), which is used in most systems also produces 
rigorous schedule. An example of the scheme utilizing this 
property is Implicit Tick Method (ITM) [3]. ITM observes 
the order which the GSTs enter prepare-to-commit state. If 
the order produced by all LDBs is not identical, it will 
restart all involved global transactions. Nevertheless, in our 
approach, all NodeManagers already agree on the global 
order. Thus, when the NodeManager receives a prepare-to-
commit from the GST, it can immediately determine 
whether the prepare-to-commit operation of that particular 
transaction would violate the global order. If the GST 
performing prepare-to-commit is not the next GST that 
should prepare-to-commit based on the global order hold by 
the NodeManager, it will locally restart only that GST. 
Although this might be an unnecessary restart, it is less 
expensive than restarting the entire GT. To restart the GST 
with wrong prepare-to-commit order, say GSTwrong, the 
NodeManager will hold the GSTwrong for a threshold period 
of time proportional to the number of GSTs which should 
enter prepare-to-commit state before the GSTwrong, say its 
predecessors.  If all of the predecessors of the GSTwrong have 
finished before the threshold period ends, the GSTwrong will 
prepare-to-commit after them; otherwise, it is assumed that 
the GSTwrong indirectly conflict with its predecessors and 
should be aborted and restarted. It is also possible that a 
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large number of GSTs are ready to prepare-to-commit but 
are waiting for a single GST. In this case, when the number 
of these GSTs reaches a threshold value, the GSTAgent of 
the blocking GST would return to its GTAgent and request 
for a global restart. Thus, other waiting global GSTs can 
process to prepare-to-commit. 

 
3. Other Concurrency Control Schemes: For fully autonomous 

LDBs whose local concurrency control scheme is globally 
unknown, forced conflict method is a practical solution [3]. 
It applies take-a-ticket scheme to force additional conflict, 
which reflects the serialization order based on the ticket’s 
value. Provided that every local transaction manager always 
produces serializable schedule, by controlling the order in 
which the GT take a ticket, the NodeManager is able to 
reserve the defined global serialization order. 

The global order is always respected even though the global 
transactions do not conflict. Indirect conflicts which are 
invisible to the global level will not affect the correctness of 
our algorithm. Thus, our approach can address both direct and 
indirect conflicts. In any of the three aforementioned 
approaches, if the local transaction manager aborts one GST, 
its corresponding GSTAgent will inform its GTAgent to abort 
its other GSTs to preserve atomicity. The GT will be removed 
from the global order, while other succeeding GTs in the 
schedule remain unaffected. The aborted GT will be re-
submitted and obtain a new position in the global order. 

C. Proof of Correctness 

 Lemma1: Global order which the NodeManager receives 
from the GST always synchronizes with the global order it 
maintains. 
 Proof: Proofing by contradiction, let the global order at the 
NodeManager be GSTiGSTj, which depicts that GSTi 
receives smaller timestamp than GSTj at the SSN above the 
NodeManager and at the NodeManager. If the NodeManager 
later receives a global order contains GSTiGSTkGSTj 
from the GST, it means that GSTk arrives the SSN above the 
NodeManager after GSTj (otherwise, it should have included 
in its current global order). However, GSTk has lower 
timestamps than GSTj; thus, violates timestamp ordering rule 
of the summary schema node. Thus, case i) Cannot occur. ii) 
Let the global order at the NodeManager be GSTiGSTj. 
Later, the NodeManager receives a global order contains 
GSTjGSTi from GST. It means that there are at least two 
GSTs receive different global order from the same SSN. This 
case cannot happen because they received information from 
the same global order. The proposed scheme does not violate 
local autonomy because it does not require any modification 
to the local systems. 
 

Lemma2:  When local transaction manager uses timestamp 
ordering concurrency control protocol, by submitting GSTs to 
the local transaction manager in the same order as the global 
order, the NodeManager maintains global serializability. 

 Proof: For any timestamp order based local transaction 
manager, the serialization order of the transactions submitted 
to it is determined by the timestamps the transactions received 
at upon their arrivals. Thus, when the GST are submitted to 
LDB in the same order as the common global order, the local 
serialization order of the LDB is the same as the global order, 
which in turn depicts the global serialization order. 
 

Lemma3: When local transaction manager uses rigorous 
concurrency control scheme, NodeManager guarantees to 
maintain global serializability. 

Proof: Based on the proof that the global serialization 
order under rigorous concurrency control is depicted by the 
order which the GSTs commit. Each NodeManager ensures 
that order conforms to the global order maintained by all other 
NodeManagers. If the global order contains GSTiGSTj, the 
NodeManager ensure that GSTi reports prepare-to-commit and 
is committed before GSTj. Thus, the NodeManagers produce 
local history that is synchronized with the global order, 
leading to global serializable schedule. 
 

Lemma4: When local transaction manager uses any 
concurrency control protocol, NodeManager guarantees to 
maintain global serializability using Forced Conflict Method. 
 Proof: Forced conflict method guarantees that local history 
produced by the local transaction manager follows the order 
of the ticket value. The NodeManager issues the ticket to the 
GSTs according to the commonly agreed on global order. 
Therefore, it produces local history that is synchronized with 
the global order, preserving global serializability. 

 

V. PERFORMANCE EVALUATION 

The proposed system was simulated and compared against 
the V-Locking algorithm because i) To our knowledge, it is 
the most recent concurrency control scheme for mobile 
MDBS which local databases in fixed network and ii) It has 
been shown to outperform Potential Conflict Graph (PCG), 
forced conflict, and site-graph algorithm [5]. The simulator 
was developed using SimJava 2.0 [15]. The mobile 
multidatabase system consists of 7 local databases. Each of 
which contains 100 data items, 20 items are hot-spot, which 
are more likely to be accessed. In our simulation, if the GT is 
aborted because of conflict, it is automatically restarted. When 
a GT or LT is completed, a new GT or LT is created. 

A. Simulation Parameters 

Each simulation runs for 1000 time units. The global 
system and local system parameters used in the simulation are 
presented in table II and III respectively. We chose to simulate 
rigorous concurrency control as it is the most commonly used. 
Most of the simulation parameters we used are identical to 
those used in the simulation of the V-locking algorithm [5], 
except that we allowed more operations per GT and included 
hot spot. Parameters for agents were from measurements using 
IBM’s Aglets agent platform.  
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B. Simulation Results 

We use processing time of the transaction and the number 
of communication messages to compare the performance of 
AT3M and V-Locking algorithms. The processing time is 
measured from the time the user submits the transaction to the 
system to the time the user receives the result, which depicts 
the system performance perceived by the user. The number of 
communication messages implies the bandwidth requirement 
of the system. First, both systems process only global 
transactions under different probabilities of read-only 
transactions. As two read-only transactions do not conflict, 
lower probability of read-only transaction depicts higher 
probability of conflicts. As shown in figure 4, the processing 
time of AT3M algorithm is about half of the V-Locking 
algorithm because i) The AT3M does not have to wait for 
global locks at each SSN level, ii) GSTAgents enable parallel 
processing of all global subtransactions, and iii) GSTAgents 
and NodeManager try to locally restart the potentially conflict 
global subtransaction before requesting for global restart. 
Moreover, the processing time of AT3M across various 
probabilities of read-only transaction is more stable. Since 

AT3M always organizes the global subtransactions into the 
commonly agreed on global order regardless of the degree of 
conflicts between the global transactions, the change in 
probability of read-only transactions only impacts the 
processing time at the local databases, not at the global level. 

Figure 5 describes the average number of messages in the 
system per global transaction. With AT3M algorithm, each 
GSTAgent is responsible for each global subtransaction. It 
contacts the GTAgent only when prepare-to-commit, after 
successful commit, and to request for global restart. In 
contrast, V-Locking algorithm requires explicit 
acknowledgement from the local database back to the GTC 
after each operation. Therefore, number of communication 
messages under AT3M is significantly lower than V-Locking. 
Although the V-Locking algorithm provides options to send 
acknowledgement only after each write operation or after 

TABLE II 
GLOBAL SYSTEM PARAMETERS 

Global System Parameter 
Default 
Value 

The maximum number of active global transactions in 
the system 

10 

Maximum number of operations that a GT contains 35 
Minimum number of operations that a global transaction 
contains 

1 

SSN’s CPU time 0.005 s 
SSN’s IO time 0.01 s 
Mobile device’s CPU time 0.005 s 
Mobile device’s IO time 0.01 s 
Mobile agent’s dispatch delay 0.016 s 
Mobile agent’s migration delay 0.016 s 
Probability of strong wireless connection  0.5 
Probability of weak wireless connection 0.3 
Probability of wireless disconnection 0.2 
Communication message per operation 2 
Communication delay during strong wireless connection 0.1-0.3 s 
Communication delay during weak wireless connection 0.3-3 s 
Communication delay during wireless disconnection 30-120 s 

 

TABLE III 
LOCAL SYSTEM PARAMETERS 

Local System Parameter 
Default 
Value 

Number of data objects per local database 100 
Ratio of hotspot size 0.2 
Probability that a local transaction accesses the 
database’s hotspot 

0.5 

Local system’s CPU time 0.005 s 
Local System’s IO time 0.01 s 
Maximum disk access time 0.016 s 
Minimum disk access time 0.008 s 
Communication message per operation 2 
Communication delay of wired connection 0.1-0.3 s 
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commit/abort of the global subtransaction, such alternatives 
would be traded off with higher degree of fault deadlocks 
which would degrade other performance metrics.  

Figure 6 illustrates the impact of changing the local to 
global transaction ratio (LT:GT), which shows the extent to 
which the global users would be affected from the load at the 
LDB. AT3M still give better processing time for global users. 
It is shown that the processing time of the local transaction is 
not affected by the LT:GT ratio. As the local transactions 
access only single LDB using wired connection, they always 
have shorter processing time than the global transactions. 

 

VI. CONCLUSION AND FUTURE DIRECTIONS 

A. Conclusion 

This paper proposed AT3M as a new approach for 
transaction management in mobile multidatabase. It introduces 
the use of agent technology. Each global transaction is carried 
out by an agent, which dispatches child agents representing 
the corresponding global subtransactions. The protocol is a 
non-locking approach. The global serialization order is 
determined before the global subtransactions are submitted to 
the local databases. The use of the agents allows fully 
distributed transaction management and parallel processing of 
all global subtransactions, and also addresses user’s mobility. 
From the simulation, the proposed AT3M algorithm provides 
better average processing time and lower number of 
communication messages than the V-Locking algorithm 
which has been designed for the same environment. 

B. Future Directions 

The current work covers the main functions of transaction 
management for mobile multidatabase. There are still a lot of 
opportunities to enhance the proposed algorithm. First, the 
algorithm can be enhanced to operate under mobile ad hoc 
environment, which the local databases are mobile. Second, 
the system can use some caching scheme to give better 
processing time. Sharing cached information among users 
may be performed using the concept of co-operate caching 
[4]. Third, the protocol can be improved to handle user’s 
migration (i.e. disconnected user who is reconnected to a 
different access point). 
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