
Challenges in Scheduling Aggregation in CyberPhysical Information Processing
Systems

James Horey
Computational Sciences and Engineering

Oak Ridge National Laboratory
Oak Ridge, TN, USA

email: horeyjl@ornl.gov

Abstract—Data aggregation is an important element in
information processing systems, including MapReduce clusters
and cyberphysical networks. Unlike simple sensor networks, all
the data in information processing systems must be eventually
aggregated. Our goal is to lower overall latency in these systems
by intelligently scheduling aggregation on intermediate routing
nodes.

In order to understand the potential challenges associated
with constructing a distributed scheduler that minimizes la-
tency, we developed a simple model of wireless information
processing systems and simulation of our model. Unlike pre-
vious models, our model explicitly takes into account link
latency and computation time. Our model also considers
heterogeneous computing capabilities. We tested the latency
while randomly assigning aggregation computation to nodes in
the network. Preliminary results indicate that in cases where
the computation time is greater than transmission time, in-
network aggregation can have a large effect (reducing latency
by 50% or more). However, naive scheduling can have a
detrimental effect. Specifically, when the root node (a.k.a the
basestation) is faster than the other nodes, the latency can
increase with increased coverage, and these effects vary with
the number of nodes present.

Keywords-sensor networks; scheduling; information process-
ing; aggregation

I. INTRODUCTION

In this paper, we explore the challenges of scheduling
data aggregation (i.e. reduce operations) in information
processing systems, with the goal of minimizing the resultant
latency. We define an information processing system to be
one in which the primary goal is to perform some sort of
computation over the data (as opposed to simply relaying
the raw data). Examples include clusters that operate over
big data (MapReduce [1], LINQ [2]) and public resource
computing [3] (SETI@home [4], Einstein@home [5], Fold-
ing@home [6]) that operate over volunteered computing
resources. More recent examples include cyberphysical net-
works that are designed to process and analyze sensor data.
We assume that an important goal for these systems is to
lower overall latency. For example, a surveillance network
designed to track vehicles via ground sensors must perform
the computation before the vehicle is out of range, and
in a traffic monitoring network driving conditions must be

calculated in a timely manner.
In information processing systems, computation can be

expressed as a type of reduce operation (along with some
local operations). Typically reduce operations are more
complex than simple aggregation functions [7], but can still
be parallelized across a set of machines. Each partial com-
putation outputs a partial aggregate, which can be merged at
another node. Although some programming interfaces, such
as MapReduce, do not parallelize these functions, there is
no inherent reason why the interface couldn’t be extended
to support parallel partial aggregation.

In this paper we focus on cyberphysical networks that
employ a wireless, multi-hop routing scheme. Even when
nodes have access to a long-range communication capability
(e.g. cellular), users may prefer to disable such communi-
cations (due to monetary costs, poor signal, battery power,
etc.). Tree-like routing structures are quite common for these
networks and easily enable in-network data aggregation [8],
[9]. Given such systems, the key question is: where should
reduce operations be scheduled so that the overall latency
is minimized? Previous works on this question [10], [11],
have only considered homogeneous environments (where
the relative speed of the basestation is not considered)) and
do not explicitly model computation and transmission time.
In addition, these works also consider actively selecting
the routing path; here we assume that the routing path
is determined by the operating system and is not directly
controlled by the aggregation scheduler.

Note that our scenario addresses a slightly different
problem than the one posed in typical real-time sensor
networks. We assume that the reduce operations eventually
take place somewhere in the network; simply relaying the
raw data as fast as possible is not an option. Work by
Abdelzaher et al. [12] assume that the goal is to saturate
the network without introducing additional delays and that
aggregation is an important, but optional tool. The question
we address assumes that a routing mechanism is already
in place [13], and that the challenge lies in scheduling the
reduce operations given a routing tree. In order to investigate
the possible tradeoffs associated with different scheduling
algorithms, we’ve developed a simple model and simulation



of a cyberphysical information processing system.

II. MODEL

We employ a high-level model of the information pro-
cessing network. Our model is differentiated from previous
models by explicitly modeling computation, node computa-
tion time, and node transmission time. Our model is similar
to a finite-state model in which nodes generate data (or
equivalently access data from a local storage device), route
this data up towards a final destination (i.e. the basestation),
and perform reduce operations over the data. These actions
occur in discrete timesteps. Elements of our model include
nodes and computation. Nodes are connected via some
routing topology (typically some tree structure), and can be
assigned computation.

A single computational job is modeled by the time it
takes to perform work over a unit of data (cd), the units
of data the computation consumes (input), the units of data
the computation outputs, and the minimum units of data it
takes to trigger the work. Since we are modeling reduce
operations, the computation will output fewer units than the
input. In addition, the time it takes for a single computational
job to process the input scales linearly with the amount of
input. In our model, data is modeled as an integer that can
be interpreted as the size of the data.

Nodes are modeled by the computational time to process
a data element (cn), packet transmision size (p), and trans-
mission time (tn). For cn and tn, lower values indicate a
faster node or link. Nodes also contain a local data buffer.
Since data is modeled by the size of the data, the buffer
is also modeled by a value indicating the number of bytes
it contains (b). Both computation speed and transmission
model the number of timesteps it takes for the node to
perform computation or transmit data. If a node is assigned
computation, the time it takes to execute the computation is
a product of cn, cd and the amount of data in the buffer.
Transmission speed is also an integer value indicating the
number of timesteps it takes to deliver a single packet to
the routing parent. Packet size is an integer value indicating
the number of data units the node can transfer during a single
transmission period.

At each timestep, nodes can be in one of three states:
computing, transmitting, or idle. Nodes can receive data
while in any of these states. Initially, each node generates
(or accesses) some amount of data that must be routed and
processed. If a node is in an idle state, it first attempts to
transition into the computing state. If this fails, the node then
attempts to transition into the transmitting state. Finally, if
both transitions fail (perhaps there is no data in the buffer),
the node remains in the idle state.

A node enters the computation stage if it has been
assigned computation and has sufficient input. Once in the
computation stage, the node will wait an appropriate number
of timesteps for the computation to complete (cn ∗ cd ∗ b).

After the computation is complete, the output is added to the
data buffer. If there are no other pending computational jobs,
the node will then enter the transmitting state and transfer
the output. The root of the routing tree is special in that it
is always assigned a reduce operation (so that at least one
node in the network will perform a reduce).

Upon entering the transmitting state, the node waits the
appropriate number of timesteps for the transmission to
complete (tn ∗ b). At the end of the transmission, the data
present at the start of the transmitting state is transferred
to the routing parent. During any of these stages, additional
data may accumulate in the buffer. At the completion of the
transmitting stage, the node will re-enter the idle stage, and
thus restart the computation cycle over the new data.

By changing the relative values of cd, cn and tn, our
model can emulate the different properties of various net-
works and applications. For example, a MapReduce-like sys-
tem running on a mobile network can increase the value of
cd so that the system becomes bounded by computation time.
Likewise a sensor network may set tn to be higher relative
to cn to emulate a slower network. To model lossy radio
networks, different tn can be assigned to nodes depending
on the number of routing siblings. To model heterogeneous
networks, cn and tn can be assigned different values for
certain nodes (such as assigning a very low cn to the
basestation). One current limitation is that these parameter
values are set at the beginning of the simulation, and do not
change over time. However, we expect to implement and
evaluate dynamic settings in the future.

III. EVALUATION

We explore the effects of randomly assigning reduce
computations for multiple network scenarios. These results
can be used to guide future algorithm development and can
serve as a null model for other more interesting algorithms.
Because our model considers an abstract view of the com-
munication, we opt to use a custom simulator instead of a
low-level packet simulation [14]. We simulate two types of
nodes: regular nodes and a single root node. The root and
the nodes are arranged in a binary-tree routing topology. We
assume that the root node is always situated at the top of
the routing tree. For our experiments, we set the root node
to be identical to the processing nodes (same cn and tn
values)), and also make the root node faster (lower cn value
for the root). To simplify terminology, we assign cr to be
the root computation time and limit cn for the other nodes.
Also, since our scheduler assigns computation randomly,
we define coverage to be the proportion of nodes that are
assigned reduce computation. For example, a coverage of
0.0 indicates that only the root node has been assigned a
reduce, while a coverage of 1.0 indicates all nodes have
been assigned a reduce. For our experiments, we simulate
up to 1000 nodes and measure the number of timesteps it
takes for the root to reduce all the data from the network



as we increase coverage. For all experiments, the reduce
computation was set to consume 100 units and output
1 unit (with a minimum of 200 units before executing).
Likewise, the packet size was set to a maximum of 100
units. Finally, each experiment is run independently 10 times
over a random routing tree and the results are averaged and
normalized.

A. Homogeneous

For the first experiment, we evaluate the effects of varying
cn relative to tn for networks of size 50, 250, and 1000. This
models what occurs as the computation time dominates the
transmission time. tn/cn was set to 0.25 (computation dom-
inates), 0.50, 2, and 3 (transmission dominates). The root
computation time (cr) was set equal to the node computation
time (cn). We find that when the computation time is smaller
than transmission time (cn < tn), it is always beneficial
to increase coverage regardless of the actual network size
(Figure 1). This is expected since transmitting the data costs
more than computing, the nodes should always choose to
compute since this reduces both latency and the amount of
data transmitted.

For the scenarios in which cn > tn, we find that increas-
ing coverage still lowers the latency. However, continually
increasing coverage does not yield continued benefit. For
larger networks (250 and 1000 nodes), the latency begins
to increase again after the network has been covered ap-
proximately 50− 70%. This U-shaped effect becomes more
noticable with the larger networks. Although one would
initially expect that a coverage of 1.0 would yield the
greatest benefit, performing reduce operations in our model
has a small, but visible cost. As the network becomes larger
and the tree structure increases in depth, there will be more
partial aggregate data. If enough partial aggregate data is
collected, this will induce additional reduce operations.

Intuitively, we also find that the larger the network, the
greater the relative benefit is for moderate coverages (< 0.50)
(Figure 2). For example, increasing coverage to 0.10 lowers
relative latency more for the 1000 node network compared
to 250 nodes (Figure 1). This is because the same coverage
value covers a larger number of nodes while each reduce
operation computes over a larger dataset.

We also performed the same experiment with the node
computation time being set to 5 times higher than the
root computation time (right-hand Figure 1). This models
scenarios in which the root (a.k.a basestation) is a much
faster machine than the other nodes. Unlike the scenario in
which cr is equal to cn, for 50 nodes, increasing coverage
(between 0.10 and 0.30) can increase the latency. This is
true for all values of cn, where cn < tn. This is because
with very little coverage and for relatively small networks,
the benefit of performing in-network reduce operations does
not exceed the benefit of transmitting less data. In addition,
if these reduce operations occur near the root, the system is

not able to take advantage of the low root computation time.
As the network size increases (250 and 1000 nodes), these
effects become less pronounced. Finally, we also find that
as computation becomes slower relative to transmission, the
more benefit there is to increasing coverage. Intuitively, more
expensive computation benefits from more parallelization.

B. Heterogeneous

0 200 400 600 800 1000
0.

2
0.

4
0.

6
0.

8
1.

0

cn = 4 tn

Nodes

R
e
la

ti
ve

 G
a
in

Coverage
0.2
0.5
0.8

Figure 2. The relative benefit (as measured by latency) as the number of
nodes are increased given three coverage values (0.2, 0.5, and 0.8).

For these set of experiments, we compare the effects of
making the computation time higher relative to transmission
(cn > tn) across network sizes (25, 50, and 250 nodes).
Again, we measure the latency of executing a particular
scheduling decision with respect to coverage. For each
network size, we set the root computation time to be equal
to the node time (cr = cn), set the root time to be one-
fifth smaller (5cr = cn), and set the root to have zero time
(infinitely fast).

For 25 nodes, we observe that latency increases with
coverage before dropping back down when cr is lower than
cn (top-most Figure 3). This is because with such a small
network, the cost of transmitting the data is small (few hops),
and the benefit of letting the root reduce is great. Unless
we can parallelize the task sufficiently, the slow speed of
the nodes simply increases the overall latency. This effect
becomes more pronounced as cn becomes larger relative to
tn. When cn is 20 times greater than tn, a coverage of 0.0
(i.e. only the root reduces) yields the lowest latency (except
when cr is equal to cn).

For 50 nodes, we observe approximately the same effects
(middle Figure 3). When cn is only twice greater than
tn, parallelizing the reduce operations yields more benefit
compared to the 25 node network. As cn increases relative to
tn, latency increases with low coverage, although the effect
is less pronounced than for the 25 node network. For 100



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 1. Comparison of latency versus node coverage with different relative values of node computation speed (cn) and transmission speed (tn). This
experiment was done for 50, 250, and 1000 nodes, with the root computation time (cr) set equal to the node computation time, and set to 1

5
the node

computation time.

nodes, we find that increasing coverage will immediately
lower the latency regardless of cr (with the one exception
of when cn is 20 times greater than tn). Although this does
not seem intuitive (processing the data in an infinitely fast
root should yield a large benefit), the limiting factor becomes
the transmission from the nodes to the root.

Because the transmission speed between the root and the
nodes is limited, the root will often finish computation before
receiving all the data from the network. Consequently, it
becomes advantageous to increase coverage (this reduces the
amount of data produced by the network). Since the system
becomes network-limited, we observe that the latency al-
ways converges with increased coverage. This is because
as coverage increases, it becomes more likely for a node
near the root to perform a reduce operation. This deprives

the root of work (and therefore limits the effects of a lower
cr value). At the extreme case (coverage is 1.0), the root
may not perform any significant computation. These values
converge sooner in larger networks because a random node
in a larger network will likely be the subroot for a larger
subset of the network.

As the number of nodes is increased, the relative benefit
for a particular coverage increases quickly and then tapers
off (Figure 3). For smaller networks, we need proportionally
more nodes to perform reduce operations to reduce the
latency by the same relative amount. For medium-sized
networks (500 nodes), there is very little latency change
with respect to coverage. However, for larger networks (1000
nodes), having too much coverage is detrimental since this
can cause additional reduce operations.



Figure 3. Overall latency versus node coverage when the root computation time (cr) is set to be equal to cn, 1
5

the time, and when cr is set to 0.0
(infinitely fast). This experiment is evaluated for 25, 50, and 250 nodes as the relative computation time is changed with respect to the transmission time.

IV. DISCUSSION

Although our model and simulation are relatively simple,
the results point to some promising avenues for future
research. First we find that in the most simple case where
computation time is lower than transmission time (many
sensor network scenarios fit this description), increasing
coverage reliably reduces latency. However, as computation
takes longer relative to transmission, 100% coverage is not
always ideal. Increasing coverage can force the network
to perform additional work with relatively little or no
gain. This effect is more pronounced for larger networks
and has implications for large-scale, sensor networks. For
sensor networks where computation costs may dominate
(fourier transforms, poor network connectivity, etc.), a naive
assignment of reduce operations, may inadvertently increase
network latency.

For the scenario in which the root computation time
is lower than the other nodes in the network, we find
that the best solution is to hand off the processing to the
root node when network sizes are small. As the network
increases in size, however, performance becomes limited
by the transmission capacity between the network the root
node. Even in the case of an infinitely-fast root node, the
network is forced to distribute reduce operations to limit
data transmission.

These observations, taken together, indicate that a few
heuristics may improve upon our random scheduling model.
First, a node should only consider scheduling a reduce
operation if there are a sufficient number of siblings to
parallelize the computation. For example, if the reduce
operation takes 3 times longer than a transmission, then
there is benefit if there are 3 or more siblings in the
same level of the tree that parallelizes that task. A node



should also consider its depth in the tree and the relative
speed of the root node. If the root is much faster, then
nodes near the root should avoid performing aggregations.
Our expectations are to incorporate these heuristics into a
distributed scheduling algorithm. This algorithm, besides
benefiting multi-hop networks, also has the potential to
benefit a wide range of distributed information processing
systems. For example, in order to maximize node usage, a
MapReduce cluster may organize the compute nodes along
a tree-structure. Our algorithm could then be used to prune
and restructure the tree.

V. CONCLUSION

We’ve presented a simple model of an information pro-
cessing system that can be applied to a variety of real-
world systems, including mobile MapReduce networks and
sensor networks. Our model is high-level and can be used
to study the latency effects of scheduling reduce/aggregation
operations in the network. Our model can also accommodate
nodes of varying processing capability, making it useful for
heterogeneous networks. We used this model in a simulation
investigating the results of randomly scheduling reduce
operations in a tree-structured network. We do not intend for
our random scheduler to be a realistic scheduling algorithm.
Instead, we expect the data produced by our simulation to be
used as a null-model for future research. Even so, there were
still interesting results that we believe should be incorporated
into future scheduling algorithms.

VI. ACKNOWLEDGMENT

The author would like to thank Brent Lagesse and Stephen
Kelley for their suggestions and ideas. This work was
partially funded by an ORNL Lab Directed Research and
Development grant (LDRD 05665).

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” 2004.

[2] E. Meijer, B. Beckman, and G. Bierman, “Linq: reconciling
object, relations and xml in the .net framework,” in ACM
SIGMOD International Conference on Management of Data,
2006.

[3] D. P. Anderson, “Boinc: A system for public-resource com-
puting and storage,” in IEEE/ACM International Workshop
on Grid Computing (GRID). Washington DC, USA: IEEE
Computer Society, 2004.

[4] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer, “Seti@home: an experiment in public-resource
computing,” Communications of the ACM, vol. 45, no. 11, pp.
56–61, 2002.

[5] B. Abbott, “Einstein@home search for periodic gravitational
waves in ligo s4 data,” Physics Review D, vol. 79, no. 2, p.
022001, Jan 2009.

[6] S. M. Larson, C. D. Snow, M. Shirts, and V. S. Pande, “Fold-
ing@home and genome@home: Using distributed computing
to tackle previously intractable problems in computational
biology,” eprint arXiv:0901.0866.

[7] Y. Yu, P. K. Gunda, and M. Isard, “Distributed aggregation
for data-parallel computing: interfaces and implementations,”
in ACM Symposium on Operating Systems Principles (SOSP).
New York, NY, USA: ACM, 2009, pp. 247–260.

[8] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann,
and F. Silva, “Directed diffusion for wireless sensor network-
ing,” IEEE/ACM Transactions Networking, vol. 11, no. 1, pp.
2–16, 2003.

[9] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“Tag: a tiny aggregation service for ad-hoc sensor networks,”
SIGOPS Operating Systems Review, vol. 36, no. SI, pp. 131–
146, 2002.

[10] X. Chen, X. Hu, and J. Zhu, “Minimum data aggregation
time problem in wireless sensor networks,” in International
Conference on Mobile Ad-Hoc and Sensor Networks (MSN),
Wuhan, China, 2005.

[11] B. Yu, J. Li, and Y. Li, “Distributed data aggregation schedul-
ing in wireless sensor networks,” in IEEE Conference on
Computer Communications, Rio de Janeiro, Brazil, 2009.

[12] T. Abdelzaher, T. He, and J. Stankovic, “Feedback control
of data aggregation in sensor networks,” in IEEE Conference
on Decision and Control, Atlantis, Paradise Island, Bahamas,
2004.

[13] T. He, J. A. Stankovic, C. Lu, and T. Abdelzaher, “Speed:
A stateless protocol for real-time communication in sensor
networks.” Los Alamitos, CA, USA: IEEE Computer
Society, 2003.

[14] X. Zeng, R. Bagrodia, and M. Gerla, “Glomosim: a library for
parallel simulation of large-scale wireless networks,” SIGSIM
Simul. Dig., vol. 28, no. 1, pp. 154–161, 1998.


