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ABSTRACT
As massive collections of digital health data are be-
coming available, the opportunities for large scale auto-
mated analysis increase. In particular, the widespread
collection of detailed health information is expected to
help realize a vision of evidence-based public health and
patient-centric health care.

Within such a framework for large scale health ana-
lytics we describe several methods to characterize and
analyze free-text mammography reports, including their
temporal dimension, using information retrieval, super-
vised learning, and classical statistical techniques.

We present experimental results with a large collec-
tion of mostly unlabeled reports that demonstrate the
validity and usefulness of the approach, since these re-
sults are consistent with the known features of the data
and provide novel insights about it.

1. INTRODUCTION
Electronic health records are being promoted by the

government, private companies, and the medical and re-
search communities ([2, 12, 15]). Naturally, as massive
collections of digital health data become available, the
challenges and opportunities of automated analysis will
appear.

In fact, in the same way that the detailed historical
record of every commercial transaction allows financial
entities to identify broad patterns of behavior and to es-
timate how financially “healthy” a particular customer
is, the large scale collection of detailed health informa-
tion is expected to help realize a vision of evidence-
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based public health and patient-centric health care, [4,
27].

That is, the analysis of health records should help to
discover both the commonalities shared by the popu-
lation as well as the particular features that make a
certain patient unique. Moreover, taking into account
the temporal dimension can help to detect the appear-
ance of unexpected events, such as outbreaks, [10], tem-
poral patterns between drug prescriptions and medical
events, as in [20], or help to device timely and effective
prevention campaigns.

Idealized patient data representation for analytics.
Patient data can relate to a wide variety of aspects

(allergy information, prescription information, test re-
sults, radiology results, demographic information, var-
ious types of clinical notes, etc.) which can be avail-
able in several electronic formats (images, text, spread-
sheets, etc.). Depending on how well all these data can
be structured, organized, searched, filtered, and com-
pared in an automated way, many of the principles or
even specific methods of existing large scale learning
and pattern discovery techniques could be applied.

Ideally, amassing all these data about healthy and un-
healthy patients would help to achieve a better under-
standing of the health status of large populations, and,
hopefully, the development of decision systems that can
facilitate the physician’s work at the individual level.

In the idealized situation shown in Fig. 1a all the
patient data is mapped to the space P with two di-
mensions, P1 and P2, where healthy patients appear
as blue dots ( ), and unhealthy patients appear as red
circles ( ), whose inner color indicates a particular ail-
ment (e.g., representing a specific heart condition).
From the data mapped to this idealized space P one
could then discover the decision boundary in Fig. 1b to
determine whether a patient may be at risk of certain
condition, based on the similarity of his/her data to pa-
tients already diagnosed, where the darker the color the
higher the certainty of the decision.

The status of a patient, however, changes with time,
and his/her associated data changes as well. Moreover,
medical science is also dynamic. Thus, even in the ide-
alized mapping of Fig. 1, the location of a patient in
Fig. 1a would change with time, as would the decision
boundary in Fig. 1b. Therefore, a better representa-
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Figure 1: An idealized mapping of patient data to a
two-dimensional space: (a) Original data, (b) Decision
boundary.
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Figure 2: Idealized depiction of a patient’s data trajec-
tory.

tion for the patient data (that would take into account
his/her evolution) is as a trajectory in time through the
data space, as depicted in Fig. 2. In this idealized ex-
ample, the data for patient i, Pi, moves through the
one-dimensional patient space P at different points in
time relative to the first time data was collected from
him/her. As an instance of usage of these trajectories
one could take all patients that are being treated for
certain condition and analyze whether they evolve as
expected.

Although the scenarios from Figs. 1 and 2 (which
encompass all conditions integrally) may be completely
unattainable in reality, they are already in place for
many specific cases. For example, to determine blind-
ness and low vision conditions the patient data space is
given by all the possible results of a visual acuity test,
and the decision boundary has been determined by the
World Health Organization’ International Classification
of Diseases1. Thus, what can be done is to systemati-
cally deal with one or few conditions at a time.

In this spirit, we present a methodological approach
to characterize clinical notes, specifically, mammogra-
phy reports, including their temporal dimension. We
also discuss how to use these characterizations, and pro-
vide examples of the insights that can be drawn from
them.

1http://apps.who.int/classifications/apps/icd/
icd10online/index.htm?navi.htm+ka00

Problem definition.
Given a large amount of mammography reports, some

of them labeled with diagnostic information (i.e., nor-
mal or suspicious findings), we want to characterize the
reports and the patient’s report history, as a first step
towards large scale data analytics.

Our solution.
Our approach is to obtain a representation of the data

that allows to understand important features of the full
data set without being overwhelming, and to validate
it using the labeled data.

We represent a report using either the full text, or as
a reduced vocabulary based on the clinical descriptions.
We use both types of representations independently to
calculate a measure of distance between every pair of
reports. These distances are then used to map the re-
ports to two- and one-dimensional spaces.

Also, we map the sequences to trajectories in a two-
dimensional space: the first dimension is the time be-
tween mammographies (relative to each patient’s first)
and the second dimension is the one-dimensional map-
ping of the report.

We represent a patient’s report history as a sequence
of reports. We use a well-known measure between time
series to calculate the distance between sequences using
the text representations.

Paper contributions.
In the context of large scale health analytics, we dis-

cuss several alternatives to characterize mammography
reports with varying complexity that do not incorpo-
rate domain knowledge, including novel ideas to take
temporal information into account.

We also use a combination of information retrieval,
supervised learning, and classical statistical techniques
to gain a better understanding of the mammography
reports, which, to the best of our knowledge, has not
been done before.

Paper organization.
The paper is organized as follows. Section 2 reviews

relevant research work and concepts mostly about mam-
mography data and vector space representation for doc-
uments. Section 3 describes formally the different char-
acterizations we defined for the data. In Section 4 we
detail the variety of experiments carried out to explore
the usefulness of the characterizations, and discuss the
results in Section 5. Section 5 concludes the paper.

2. BACKGROUND

Mammography data.
The data from a mammography exam usually consists

of four images (two projections, caudal and lateral, per
side, right and left) and a radiology report containing
the observations and professional opinion of the radiol-
ogy expert[s] about the mammogram.

Computer-aided analysis of mammography data for
the detection and diagnosis of breast cancer has been an



important subject of interdisciplinary research over the
past decades (e.g., [9, 28]). From the computer science
perspective the problem has been framed as an image
classification task. Mammograms are to be classified as
normal or abnormal, with the type of abnormality to be
identified as well. The ultimate goal for such computer
systems is to reduce the amount of human work needed
to perform the analysis, while maintaining or improving
the detection rates.

Until recently, text reports were written in medical
terminology but were largely free text. Currently the
controlled BI-RADS vocabulary2 is used. An important
feature of the pre-BI-RADS text is the prevalence of
negation phrases (e.g., “no strongly suspicious forms”,
“no malignancy”), which can have several variations
with the same basic meaning (e.g.,“no mammographic
finding suspicious”, “no strongly suspicious forms”, “no
strongly suspicious features”). These negation features
are pervasive through all types of clinical notes, as re-
ported in [8, 18].

There has been research with free-text mammography
reports to automatically generate the BI-RADS descrip-
tors ([7, 19]); to discover significant phrase patterns,
such as the basic template that unifies the variations
of a group of negation phrases (e.g., “no * suspicious”),
called s-grams [21]; to extract temporal properties asso-
ciated to medical events, [11]; to identify findings sus-
picious for breast cancer [13]; in ad-hoc classification,
[3].

Analysis of the temporal dimension of the mammog-
raphy images has also being researched, although a
lesser degree. In the clinical side, the authors in [24]
report that “Comparison with prior mammograms sig-
nificantly improves overall performance [of breast can-
cer detection in screening].” Computer-aided methods
have been researched to detect masses and to analyze
their change, [16, 29].

To our knowledge, there is no prior work in character-
izing the temporal properties of mammography reports.

Vector space representation for documents.
In text mining and information retrieval the basic

document representation is a “bag-of-words”, i.e., the
list of words that appear in the document without tak-
ing into account order. Very common words (either
collection-specific or function words such as articles and
prepositions) are usually ignored; they are called stop
words. In order to reduce the size of the vocabulary,
words may undergo stemming to obtain their common
roots; for instance, all write, writer, and writing would
map to writ.

The bag-of-words representation can be transformed
to a vector in an m−dimensional space where m is
the number of distinct words in all documents un-
der consideration, i.e., the vocabulary V = {wi} with
|V | = m. In this vector space representation the par-
ticular document document i in the collection D is
di = {wi,1, wi,2, . . . , wi,m}, where wi,j is the weight of
2Breast Imaging Reporting and Data System, developed by
the American College of Radiology.

the word wj in the document di, [26]. Most documents
only have a small subset of all the words in V , and,
therefore, only the non-zero weights are actually consid-
ered. The weighting schema usually reflects a balance
between how frequent the word is in the document vs.
how frequent it is in the collection. Words that appear
in many documents are not helpful in characterizing
them, the same way that describing an individual dog
as “four-legged” would not help to identify it, nor to
distinguish it from other dogs.

The vector space representation facilitates the com-
putation of similarity between documents. A common
measure is the cosine similarity :

sim (di, dj) = cos θ =
di · dj

‖di‖ × ‖di‖

=

Pm
k=1 wi,k × wj,kqPm

k=1 w2
i,k ×

qPm
k=1 w2

j,k

where θ is the angle between the two vectors. Since
the weights are non-negative, sim (di, dj) is always be-
tween 0 and 1.

Dynamic time warping distance.
Dynamic time warping (DTW ) is a technique to mea-

sure the distance between time series, which has been
widely used in speech recognition and data mining,
e.g.,[5, 30, 25]. DTW matches points in the series that
do not necessarily correspond in time, but that min-
imize the total distance, using dynamic programming.
Naturally, a measure of distance between pairs of points
must be specified.

DTW is particularly useful when the time series have
different lengths and a measure such as Euclidean dis-
tance cannot be applied. Fig. 3 shows an example of
such matching. In this case, the total distance is the
sum of the lengths of the segments that connect the
two time series (in red).

Multidimensional Scaling and Principal Component
Analysis.

Multidimensional scaling [6], MDS, is a statistical
technique that allows to reconstruct points in an Eu-
clidean space of a user-specified number of dimensions,
based solely in their distance information. MDS works
as an iterative process that attempts to minimize the
differences between the original distances and the dis-
tances in the reconstructed space.

Principal component analysis [14], PCA, operates di-
rectly with the points in an Euclidean space and trans-
forms them into a lower dimensionality. In PCA’s out-
put, the new first dimension captures the projection of
the data with the greatest variance, the new second di-
mension captures the second greatest variance, and so
on.

3. CHARACTERIZING MAMMOGRAPHY
REPORTS FOR ANALYTICS
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Figure 3: Dynamic Time Warping example of matching
between two time series.

To represent the mammography report for patient i
we explored several alternatives. They are listed in Ta-
ble 1, and explained below.

Vector Space with TF.
This representation uses the vector space model with

the weight being simply the number of times the word
appears in the report, i.e., the term frequency TF. This
representation was obtained using rainbow [17], an ap-
plication for information retrieval and text classifica-
tion. Default stop words were removed, except for the
words no and not, but no stemming was performed.

Thus, in this representation most of the information
of the raw text is preserved. For the patient i, its report
at time tj in this representation is noted P

tj

i .

Vector Space with TF-ICF.
This representation uses term frequency - inverse cor-

pus frequency weighting (TF-ICF ). In this weighting
scheme, the weight wi,j of the word j in the document
i is given by:

wi,j = log (1 + nij) × log

„
N + 1

nj + 1

«

where nij is the term frequency of the word j in docu-
ment i, N is the number of words in a reference corpus,
and nj is the overall number of times the word j ap-
pears in the reference corpus. The reference corpus is
TREC-5 ([1]), a collection of about a quarter million
of news feeds documents. TF-ICF has been shown to
be adequate for typical text analysis tasks [23]. De-
fault stop words were removed including the words no

and not, and stemming was performed, using the Porter
stemming algorithm,[22].

Thus, this representation does not take into account
collection specific weights, but performs vocabulary re-
duction via stemming, and removes the potentially use-
ful negation indicators. For the patient i, its report at
time tj in this representation is noted P

tj

i . The complete

patient history is noted
−→
Pi = {P

t0
i , Pt1

i , . . . , P

t|−→Pi|−1

i }, and
the space of all reports is noted P.

Vector Space with s-grams.
The s-grams unify variations from a group of phrases.

For example, “no mammographic finding suspicious”,
“no strongly suspicious forms”, “no strongly suspi-

cious features” can be unified as “no suspicious”.

More precisely, s-grams or skip grams, are word pairs
in their respective sentence order that allow for arbi-
trary gaps between the words [21].

In this representation every report is the list of the s-
grams, i.e., the weights are either 0 or 1. Thus, this rep-
resentation is extremely compact but, at least in prin-
ciple, captures the relevant clinical descriptors from the
reports. For the patient i its report at time tj in s-gram
representation is noted p

tj

i . The complete patient his-
tory is noted −→pi = {pt0

i , pt1
i , . . . , p

t|−→pi|−1
i }, and the space

of all reports is noted p.

Two dimensional Euclidean Space mapped from p and
P.

From the s-gram and the TF-ICF representations we
computed the cosine similarity cos θ between every pair
of selected patient records representations, converted
them to a distance measure by computing (1 − cos θ),
and obtained a symmetric matrix of distances D. We
applied multidimensional scaling to the matrix D to ob-
tain a two dimensional space. For the patient i its report
at time tj in this space is noted Ptj

i , and the space of
all mapped reports is P. When needed, to distinguish
whether P is obtained from the s-gram or the TF-ICF
representation we note it as p → P and P → P, respec-
tively.

One dimensional Euclidean Space mapped from P.
This representation is simply the first component of

the results of principal component analysis when ap-
plied to the patient reports in their Ptj

i representation,
obtained from the TF-ICF model (i.e., from P → P),
and it is noted ρ

tj

i . As before, the space of all mapped
reports is ρ.

Two dimensional Euclidean Space mapped from −→
Pi.

Thanks to the temporal information, the patient his-
tory

−→
Pi can be considered a time series. Thus, for all

pairs of patients we computed the distance between
their trajectories using DTW (with (1 − cosθ) as the dis-
tance measure between matching points) and generated
the distance matrix D. As before, we applied MDS to
the matrix D to obtain a two dimensional space. The
representation of the full report history for patient i in
this space is noted Ti, and the complete space is T .

Timestamps representation.
Timestamps for a patient are relative to the first

exam, and measured in fractions of years. That is, by
convention, t0 = 0, and every subsequent tj−1 is the time
interval between the first exam and the j−th exam. For
example, if a patient has her first exam on January 1st,
1983 and her third exam on November 1st, 1983, then
t2 = 304/365 = 0.83. This allows to “align” patient his-
tories regardless of the actual dates of their exams.

4. EXPERIMENTAL RESULTS

Dataset description.



For Patient i Type of

Report at

time tj

Complete

History
Representation

P
tj

i

Vector Space

with TF

P
tj

i

−→
Pi

Vector Space

with TF-ICF

p
tj

i
−→pi

Vector Space

with s-grams

Ptj

i

−→Pi

2D Euclidean

Space mapped

from P
tj

i or p
tj

i

ρ
tj

i
−→ρi

1D Euclidean

Space mapped

from Ptj

i

Ti

2D Euclidean

Space mapped

from
−→
Pi

Table 1: Summary of representation notation. See text
for details.

Y
***********************************
RADIOLOGY CONSULTATION XX-XX:16:99
BHIS #: XXXXXXXXX OUTPATIENT 6346144
XXXXX, XXXX X.
XXX XXX XXX 81 FEMALE

Clinical data: Routine screening. Patient is currently

asymptomatic. She is on hormonal therapy. XXXX, MD Screen-

ing Mammogram (XXXX/Other Covered Commercial Ins) -- Exam

#XXX on XX/XX/XX COMPARISON: XX/XX/XX FINDINGS: Standard

films of both breasts were obtained. [...]

Figure 4: Fragment of a report.

Our data is a collection of 57, 794 mammography re-
ports, 19, 905 of them with an assigned set of mammog-
raphy images, and 12, 372 patients,. There are 90 unique
reports labeled as normal, and 96 unique reports la-
beled as suspicious (note that there is not necessarily a
diagnosis). Timestamps span over 14 years. The data
was collected and anonymized by researchers at the Uni-
versity of Chicago, and prepared and indexed by the
authors. Fig. 4 shows a fragment of a report.

Besides the raw text for each report we extracted the
s-grams, and also associated the anonymized patient
identifier, the date of the mammography, and a short
description of the type of exam (e.g., “Screening Mammo-

gram”).
Table 2 shows the 10 most frequent exam descrip-

tions; unsurprisingly, screening mammograms are the
most frequent. Table 3 shows all the exam descriptions
for the frequency for normal reports; they add up to
89 instead of 90 because of a missing exam description.
Table 4 shows the 10 most frequent exam descriptions
for suspicious reports; they add up to more than 96
because of multiple exam descriptions.

We used 137 distinct s-grams, obtained with the tech-
nique described in [21]. Table 5 shows the 10 most fre-
quent s-grams; unsurprisingly, the most common are
negation phrases.

Exam Description Frequency

Screening Mammogram 40796

Diagnostic Mammogram 4848

Mammo-Limited compression views 4088

Dedicated Mammogram 2782

Breast Ultrasound Limited Study 1983

Bilateral Mammogram 990

Mammography Comparison 920

Right Unilateral Mammogram 488

Left Unilateral Mammogram 440

Needle Biopsy Procedure - Breast 417

Table 2: The 10 most frequent values for the exam de-
scription.

Exam Description Frequency

Screening Mammogram 64

Bilateral Mammogram 11

Diagnostic Mammogram 7

Dedicated Mammogram 6

Mammo-Limited compression views 1

Table 3: The frequent values for the exam description
for normal reports.

Exam Description Frequency

Mammo-Limited compression views 38

Breast Ultrasound Limited Study 35

Diagnostic Mammogram 16

Needle Biopsy Procedure - Breast 8

Screening Mammogram 7

Dedicated Mammogram 6

Left Stereo Core Needle Breast [...] 6

Bilateral Mammogram 5

Right Unilateral Mammogram 4

Breast Ultrasound 2

Table 4: The 10 most frequent values for the exam de-
scription for suspicious reports.

S-gram Frequency

no malignancy 32959

no suspicious 25867

clustered microcalcifications 25736

no masses 25438

no clustered 23622

no microcalcifications 21026

no architectural 20903

no radiographic 20659

no change 18876

no features 17348

Table 5: The 10 most frequent s-grams.
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Figure 5: NORMAL and SUSPICIOUS reports mapped to
an Euclidean two dimensional space from P

tj

i .

Supervised learning.
Since there are labeled reports we can explore how

hard it is to distinguish the reports from a healthy pa-
tient from those of a patient who is potentially ill.

Thus, we performed experiments using the Naive
Bayes text classifier as implemented in rainbow, with
the TF and the s-gram representations. We use 10 runs
using 60% of the labeled data as training and 40% as
testing. The average accuracy for the TF representa-
tion was 95.4 (σ = 2.8) and for the more compact s-
gram representation was 95.7 (σ = 2.4). That is, both
representations have almost the same, and very high,
performance.

We also performed experiments using a nearest neigh-
bor classifier with the 2D Euclidean Space P mapped
from the TC-ICF and the s-gram spaces (P and p, re-
spectively). Again with 10 runs and a 60%/40% train-
ing/testing split we obtained an average accuracy of
89.45 (σ = 2.76) and 91.21 (σ = 1.46), for the TC-ICF and
s-gram representations, respectively. Therefore, at least
from the labeled data, even the transformed Euclidean
space still contains enough information to distinguish
the labels for most of the reports.

Reports.
The reports in their two dimensional Euclidean space

representation P can be visualized, as shown in Fig. 5;
this particular visualization comes from the mapping of
the reports in their TF-ICF space, P. Thus, at least
in this small sample of labeled data, the visualization
reveals a space close to the ideals of Fig. 1, although
reversed: instead of a large region of normal and small
region of suspicious, the normal reports appear clus-
tered together, while the suspicious reports are scat-
tered. This can be explained by considering that normal
reports tend to enumerate all the suspicious features
that are not present and, therefore, are similar to each
other, while the suspicious reports describe in detail the
few suspicious features that do appear and, therefore,
are different from all other reports. This is also consis-

tent with the differences in the variety of exam types
for both classes (See Tables 3 and 4)

Adding more reports, however, clouds the picture
slightly. Fig. 6b shows 8, 000 reports mapped to P
from P, including those labeled, which are shown by
themselves in Fig. 6a. Although there is still a core of
normality, it is more mangled with the scattered sus-
piciousness. In fact, when a nearest neighbor classifier
is applied to this space, the average accuracy decreases
to 84.46 with a much larger σ = 5.18 (as before, we
ran the classifier 10 times with 60%/40% different train-
ing/testing splits.)

Trajectories.
Using the temporal dimension of the reports and their

one dimensional space ρ we can visualize the patient’s
histories as trajectories. Thus, we mapped all reports
from patients with a labeled report to their TC-ICF rep-
resentation in P, obtained their two dimensional repre-
sentation in P and, finally, obtained their one dimen-
sional representation in ρ. In total, there were 716 re-
ports. Figure 7 shows the last two reports in the tra-
jectories of patients having normal (Fig. 7a) and sus-
picious (Fig. 7b) reports.

Both sets of reports appear to span the same period
of time, i.e., about 14 years. From the normal reports
it appears that the patients are taking a little longer
than the recommended year for subsequent exams. On
the other hand, the last two points in the trajectories of
patients with suspicious reports appear much closer in
time, suggesting that the report before the suspicious
one generates a sense of urgency and the need for an-
other exam. In fact, from Table 7b, several suspicious
reports refer to ultrasounds and biopsies procedures,
which would have been done after observing suspicious
features in a regular, screening mammogram.

Patients’ histories.
The full patients’ histories mapped to the two dimen-

sional space T are shown in Figs. 8a (only patients’
histories with a labeled report) and 8b (all mapped pa-
tients’ histories). There are 7, 444 patient histories com-
prising 34, 103 reports. Only 126 patients with labeled
reports actually have a history, 66 and 60 of them with
a normal and a suspicious report, respectively.

From Fig. 8a it appears that patients’ histories with
reports labeled as normal do not cluster together, as
well as their reports do. In fact, they are almost as scat-
tered as the patients’ histories with suspicious reports.
There is still some degree of separation between the two
classes, however. Thus, when a nearest neighbor clas-
sifier is applied to this space, the average accuracy is
77.6 (σ = 2.8), for 10 runs with 60%/40% different train-
ing/testing splits. Note that this result (from patients’
histories) does not necessarily compares with the ones
above (from reports.)

The ‘layers’ of points in Fig. 8b are a consequence
of the DTW distance and the great differences between
patients histories’ lengths. Since DTW can match the
same point in one time series to several points in the
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Figure 6: 8, 000 reports mapped to the Euclidean two dimensional space P, including those labeled.
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Figure 7: Last two reports in the trajectory of patients with labeled reports.

other (See Fig. 3), it effectively penalizes pairs of pa-
tients’ histories having very different lengths; thus, in
Fig. 8b, their mapped points would tend to be sepa-
rated, while those with same length would ‘chain to-
gether’. This helps to explain the scattering pattern of
the patients’ histories with labeled reports.

5. DISCUSSION OF RESULTS
The experimental results indicate that the informa-

tion in the mammography reports is basically preserved
through the transformations induced by the various rep-
resentations, since both the visualizations and the su-
pervised learning results consistently match to what is
known from the data. More importantly, as was the
case for the different temporal dynamics that surfaced
in Fig. 7, novel insights about the data were gained.

It is important to highlight that, except arguably
for the s-grams representation, no domain knowledge
was incorporated (e.g., no BI-RADS metadata), and
not even information extraction techniques were used.
Therefore, the representations are, in a sense, rough.
Moreover, dynamic time warping is probably not the
best way to measure the distance between patients’ his-
tories, since it matches all points rather than finding
best subsequences. Even worse, DTW assumes that the
timestamps are uniformly separated (i.e., that the time

series are sampled at a constant rate) which is not the
case for clinical notes, as Fig. 7 shows clearly.

The fact that despite these limitations the different
representations still keep the gist of the original data
can be attributed to the richness of the raw reports.
In fact, a lay person is probably able to distinguish a
suspicious report from a normal one since, after all, a
radiology expert has provided a very precise descrip-
tion of what the mammography means. The interesting
implication is that vast collections of free-text clinical
notes may not require an excessive amount of work to
be useful.

6. CONCLUSIONS
We have discussed an idealized scenario for large scale

health analytics and presented several ways to charac-
terize mammography reports that fit this scenario in
broad terms. We took advantage of these characteriza-
tions to analyze a large collection of reports, including
their temporal dimension, using methods from informa-
tion retrieval, supervised learning, and classical statis-
tical techniques.

The experimental results demonstrate the validity
and the usefulness of the approach, since they both con-
formed to what was expected from the data and helped
to get novel insights about it.
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(a) Only patients’ histories with labeled reports

normal suspicious unknown

(b) All mapped patients’ histories

Figure 8: 7, 444 patients’ histories mapped to the Euclidean two dimensional space T , including those with labeled
reports.

An important goal towards the future is to dis-
cover why certain patients clinical notes or histories are
mapped together. That is, to identify the commonali-
ties that make them appear together which, hopefully,
would correspond to specific clinical aspects.

Since we have discussed a notion of time and space
for the patient data, questions about the rate of change
and the direction of the trajectory naturally arise. For
example, one would be interested in finding the tra-
jectories that contain subsequences that are closer to a
given patient’s history, since that could help to deter-
mine the likely path of the patient’s evolution.

Thus, we look forward to continue research in several
aspects: exploring of the clinical significance of the char-
acterizations; the inclusion of domain knowledge infor-
mation in the representations; more appropriate ways
to measure and compare the temporal properties of the
data.
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APPENDIX
A. PREFERRED REVIEW APPROACH

• Primary and secondary focus of the paper: Com-
puting, Medicine.

• Main three topics covered in the paper:

– Large-scale longitudinal mining of medical
records

– Computational support for patient-centered
and evidence-based care

– Innovative applications in electronic health
records


