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a b s t r a c t

There is interest to expand the reach of literature mining to include the analysis of biomedical images,
which often contain a paper’s key findings. Examples include recent studies that use Optical Character
Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classifi-
cation. Such studies rely on the robust identification of text elements in biomedical images, which is a
non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based
on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the perfor-
mance on a set of manually labeled random biomedical images, and compare the performance against
other state-of-the-art text detection algorithms. We demonstrate that our projection histogram-based
text detection approach is well suited for text detection in biomedical images, and that the iterative
application of the algorithm boosts performance to an F score of .60. We provide a C++ implementation
of our algorithm freely available for academic use.

� 2010 Elsevier Inc. All rights reserved.

1. Background

1.1. Introduction

Biomedical literature mining is concerned with transforming
free text into a structured, machine-readable format, to improve
tasks such as information retrieval and extraction. Recent work
indicates that there is much interest to also consider image infor-
mation when mining research articles, as images often depict the
results of experiments, and sum up a paper’s key findings. There
are several obstacles when mining image information. First, there
are many different types of images, such as graphs, gel electropho-
resis and microscopy images, diagrams or heat maps. There exists
no image publication standard, neither with regard to image reso-
lution, or image file format (images are stored at different resolu-
tions, and in a variety of file formats, such as jpeg, tiff etc.). Also,
there are no explicit image design guidelines, even though authors
seem to follow some universally accepted norms when creating
figures such as box plots, heatmaps or gel electrophoresis images.

A unifying element across all biomedical images is image text,
i.e. text characters that are embedded in images. Text in images
serves several purposes, such as labeling a graph, representing
genes in a heat map images, or proteins in a pathway diagram.
We have previously shown that extracting image text, and making

it available to image search, improves biomedical image retrieval
[1]. In this work, we are concerned with optimizing the perfor-
mance of a critical step in image text extraction—locating text re-
gions in images, which is known as text detection in studies on
image processing and Optical Character Recognition (OCR).

Generally speaking, text detection is a crucial step in processing
textual information in biomedical images. For example, properly
finding the text regions is the first stage of a standard OCR pipeline
for extracting image text. Determining the location of text is also
important for high-level image content understanding, as it is the
text location that indicates the meaning of certain image text ele-
ment, such as the label of the x- versus y-axis in a graph. Practical
applications aside, in this paper, we are exclusively concerned with
optimizing the performance of text detection, which is a funda-
mental research problem in image text processing.

In this work, we introduce a new text detection algorithm sui-
ted for biomedical images. We also discuss the methodological de-
tails in creating a gold standard biomedical image text detection
corpus, and the use of the corpus for evaluating the performance
of our algorithm. During the development of the corpus, we laid
down clear guidelines on what exactly constitutes an image text
region (or element) and how to manually mark the image region
linked to the string. We then compared our algorithm against three
existing state-of-the-art text detection methods. Even though our
algorithm can in principle be applied for processing all images
types, it is especially beneficial for images embedded in biomedical
publications. Compared to other disciplines, biomedical authors
tend to use distributed and nested text in their images in order
to annotate experiment settings, conditions and results.
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1.2. Related work

1.2.1. Image text detection algorithms
First, we are going to briefly look at prior work on image pro-

cessing algorithms for image text detection, which is concerned
with separating image text elements from other elements in an im-
age. Ohya et al. [2] presented an algorithm for text detection from
scene images. In their work, they first detect character components
according to gray-level differences and then match the results to
standard character patterns captured in a database. Their method
is very robust to the font, size and intensity variation in the image
texts, but is not able to deal with color and orientation changes. To
address the text detection problem for color images, Zhong et al.
[3] introduced a connected component-based method for locating
texts in a complex color image. Their method analyzes the color
histogram of the RGB space to detect text regions. Jung [4] intro-
duced a neural network based approach for identifying text in col-
or images. To attack the text detection problem for texts with
different orientations and other distortions, Messelodi and Modena
[5] described the use of low level image features such as density
and contrast to detect image texts, with the ability to deal with
skew in the image text. Hasan and Karam [6] also proposed a mor-
phological approach for image text detection, which is robust to
the presence of noise, text orientation, skew and curvature.

There is a body of work using advanced texture and graph seg-
mentation methods to detect text in images. For example, Jain and
Karu [7] introduce a method for learning texture discrimination
masks for image text detection. Jain and Zhong [8] used a learning
based approach to detect image text through image texture analy-
sis. Wu et al. [9] introduced a system for image text detection and
recognition, which adopts a multi-scale texture segmentation
scheme. In their method, a collection of second-order Gaussian
derivatives are used to detect candidate text regions, followed by
a K-means clustering process and a multi-resolutional stroke gen-
eration, filtering and aggregation process to further refine the de-
tected text region. Felzenszwalb and Huttenlocher [10] proposed
a graph-based image segmentation algorithm for efficiently sepa-
rating textual elements from graphical elements in an image. Their
algorithm can automatically adapt itself to the image structure
variation. Liu et al. [11] proposed a novel method for text detection
and segmentation through using stroke filters for text polarity
assessment in analyzing features in local image regions.

There also exists a growing collection of work on text detection
from videos or motion images, which are closely related to the im-
age text detection problem studied in this paper. For example, Li
et al. [12] used a hybrid neural network and projection profile anal-
ysis based approach to detect and track text regions in a video.
Antani et al. [13] applied a variety of text detection methods and
then fused the individual text detection results together to achieve
a robust text detection for videos. Kim et al. [14] introduced a sup-
port vector machine based approach for image text detection in
videos. Lyu et al. [15] proposed a coarse-to-fine localization
scheme for detecting texts in multilingual videos. Recently, Qian
et al. [16] proposed a discrete cosines transform coefficients based
method for text detection in compressed videos. Despite the many
commonalities between the video text and image text detection
problems, one of the main differences between them is that frame
images in a video demonstrate temporal coherence, which offer
much useful information for text detection. Such clues are not
present in still images, and hence make the image text detection
problem more challenging than its counterpart in videos.

1.2.2. Biomedical image processing algorithms and systems
Our study is related to other projects in biomedical image pro-

cessing. For example, Shatkay et al. [17] used image features for
text categorization. Tulipano et al. [18] studied the use of natural

language processing to index and retrieve molecular images. Qian
and Murphy [19] described an algorithmic system for accessing
fluorescence microscopy images via image classification and
segmentation.

In our own prior work [1], we discussed a novel approach for
biomedical image search based on OCR. We have shown that the
approach offers additional advantages compared to searching over
image captions alone, notably the retrieval of additional and rele-
vant images. The current study is closely linked to that project, dis-
cussing the algorithmic details for detecting image text regions.

2. Approach

2.1. Overview

An overview of our method is shown in Fig. 1. An input image
(i.e. an image from a biomedical publication) undergoes detection
of layout lines and panel boundaries, which are excluded from the
image to increase text detection robustness. We implement the
algorithm proposed by Busch et al. [20] for detecting these layout
elements. The image is then converted to black and white, and sub-
jected to an edge detection algorithm. The resulting edge image is
then subjected to a pivoting text region detection (PTD) algorithm
for extraction of text regions. PTD is repeated several times, in or-
der to divide detected text regions into text sub-regions. If no more
text regions are detected, the algorithm exits. Our algorithm is
based on traditional histogram analysis-based text region detec-
tion, which takes edge images as input. We extend the traditional
approach as follows: We perform a pivoting procedure while
applying the histogram analysis, and repeat the procedure until
no more text (sub)regions are detected.

2.2. Traditional histogram analysis-based text region detection

One of the most popular and well known text region detection
methods is through analyzing the vertical and horizontal projec-
tion histograms of an image. More concretely, given an input im-
age, we first detect the edge pixels in the image. Then a vertical
and a horizontal projection histogram are derived. It is assumed
that text regions generally exhibit higher density of edge pixels
than non-text regions. The vertical and horizontal histograms will
thus show the highest density of edge pixels in text areas. A den-
sity threshold defines the exact dimensions of the text area along
the vertical and horizontal histogram. The elements of this basic
procedure are discussed in more detail in the next section.

One distinct feature of many biomedical images is that they of-
ten employ a distributed and nested text layout. Figs. 3a and 4a
show two typical examples, where text is distributed across many
different image regions. Also, text regions often display some de-
gree off nestedness. For example, the numbers along the x axis in
Fig. 4b can be grouped in one large text area, or-more correctly-
into separate (inner) text areas surrounding each individual num-
ber (Fig. 4d). The traditional histogram-based analysis technique
does not cope well with distributed and nested text layout. To ad-
dress this problem, we introduce a new iterative pivoting histo-
gram analysis procedure for text region detection.

2.3. Pivoting text region detection (PTD)

We introduce a pivoting step into the classical histogram-based
text detection algorithm in order to account for the distributed
nature of biomedical image text. The pivoting procedures subdi-
vides image regions into its text subcomponents, instead of identi-
fying large text blocks. Our procedure is realized through analyzing
the histograms of the input image region following the vertical and
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horizontal directions alternatively, hence the name ‘‘pivoting’’.
Fig. 2 illustrates the key steps, and Fig. 1 in Appendix B (Supple-
mentary Files) shows the working of the algorithm on a sample im-
age. An input image is converted into black and white and

subjected to edges detection (Fig. 1d, Appendix B). For a specified
region R (the whole image in the first iteration of the procedure),
to detect text areas in R, we first vertically project all the edge pix-
els to derive the image region’s horizontal histogram Hh (Fig. 1e,

Fig. 1. Diagram illustrating the overall procedure of our new text detection algorithm.

Fig. 2. Diagram illustrating one step of the PTD algorithm (Section 2.3).
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Appendix B). We then segment the horizontal histogram into sev-
eral segments, each corresponding to a horizontal region in the in-
put image, denoted as Seg1; Seg2; . . .. The segments are defined by a
threshold on the histogram densities. We then derive for each hor-
izontal segment a vertical histogram through horizontally projec-
tion of all the edge pixels in the region. (This step is different
from the traditional approach, where the horizontal projection is
performed on the whole image). The resultant vertical histogram
corresponding to the horizontal segment Segi of the image is de-
noted as Hi

v (Fig. 1g, Appendix B). We then segment the vertical
histogram Hi

v the vertical segments Segi
1; Seg

i
2; . . . using a thresh-

old on the densities (Fig. 1g1-3, Appendix B). Each such segment
corresponds to a vertical region in the input image. Through pair-
ing of a vertical segment Segi

j with its corresponding horizontal
segment Segi, we are able to specify a rectangular region (bounding
box) Ri

j in R (Fig. 1h1-3, Appendix B), corresponding to text
regions.

In Appendix A (Supplementary Files), we formally describe this
procedure mathematically.

2.4. Iterative PTD procedure

Our algorithm iteratively constructs vertical and horizontal his-
tograms to find nested text regions. As can be seen in Fig. 1h2,
Appendix B, the first round of the PTD algorithm could not resolve
the true text areas of the image region. In the image, region 1
groups distinct image text elements, and we propose to repeat
the PTD step for separating these elements.

More concretely, our algorithm maintains an active local image
region collection (ALIRC) during its running time (Fig. 1, main pa-
per). Initially, the collection contains a single image region, which
is the full image area of the input image. The algorithm then con-
structs pivoting vertical and horizontal histograms (see previous
section) and detects text regions. Each detected text region is re-
garded as a new target region and added into ALIRC. The input im-
age region is removed from ALIRC, with one exception: if, after
subtracting the text regions from the input image, the input image
is non-empty we populate ALIRC with an updated version of the in-
put image, with the text areas subtracted. We iteratively apply our
histogram-based text region segmentation procedure on all the
image regions in the ALIRC until finer separation between text
and non-text regions can be achieved. We will then output all
the image regions maintained in the ALIRC. A final heuristic re-
moves regions that are maintained in ALIRC but do not correspond
to text regions. The heuristic evaluates the overall edge density,
removing regions that exhibit a density that is too low or too high.

2.5. Formal description of the iterative PTD procedure

1. Assuming the height and width of the input image is h and w,
respectively, we apply our pivoting text detection algorithm
introduced in Section 2.3 to detect all the text regions in the full
area of the input image. That is, we apply the PTD procedure
onto I with the text detection scope being R ¼ ð0;w;0;hÞ.
We further assume the set of regions segmented from the input
image are / ¼ fR1;R2; . . . ;Rng where each Ri specifies the
scope of a rectangular image region resulting from the PTD pro-
cess. We call / the current active local image region collection.

2. For each image region Ri in / ði ¼ 1; . . . ;nÞ, we apply the PTD
procedure onto Ri to further separate the text and non-text
areas inside the region on a finer granularity. Assume this
new round of text region detection produces k sub image
regions, which are denoted as R1

i ;R
2
i ; . . . ;R

i
k, respectively.

Given such text and non-text region segmentation result, we
first remove from / the input region Ri. And then we add all
the resultant sub image regions R1

i ;R
2
i ; . . . ;R

i
k into /. Lastly,

we also add into / the smallest rectangular region that covers
all the edge pixels belonging to the original input region Ri

but falling outside all the newly detected image regions
R1

i ;R
2
i ; . . . ;R

i
k.

3. We repeat the above process to recursively refine every image
region maintained in the current active local image region col-
lection / until / can be no longer changed through additional
calls of our PTD procedure. We then output all the image
regions in the final stage of the image region collection / which
are determined as text regions by our PTD process. These image
regions constitute our final text region detection result for the
input image I.

In Appendix B (Supplementary Files), we show a step-by-step
example of text region detection using our iterative and pivoting
text detection algorithm for a biomedical image.

Appendices C and D (Supplementary Files) contain further
examples of text detection results after applying our iterative
PTD algorithm on biomedical images.

3. Evaluation method

In this section, we will first discuss the creation of a gold stan-
dard biomedical image text detection corpus. We will then discuss
our evaluation strategy to measure the performance of our itera-
tive PTD algorithm for detecting text regions in biomedical images.

3.1. Creation of a gold standard biomedical image text detection
corpus

To objectively evaluate the performance of our algorithm, and
to quantitatively compare the performance of our method to other
peer methods, we created a gold standard corpus of biomedical
images with manual markup of text regions. In order to create this
corpus, we selected a two step approach. The first step dealt with
the identification of the text regions in the image. We set up guide-
lines for manual identification of text regions (image text) in bio-
medical images, which are listed in Table 1. The guidelines define
the nature of an image text region in a biomedical image, what
to do about Greek letters and other special characters, and strings
in super or subscript. After selecting 161 random images from bio-
medical articles indexed in PubMed Central, we used the guide-
lines to identify the image text regions. In the second step, we
identified a minimum rectangular region (bounding box) for each
detected text region. Such a bounding box is defined as the small-
est rectangular region covering all character pixels of the text re-
gion. These image bounding boxes represent the gold standard
image text regions.

3.2. Evaluation strategy

To evaluate the performance of our PTD text detection algo-
rithm, we can proceed as follows: We compare the predicted text
region bounding boxes with the bounding boxes of the gold stan-
dard corpus. In our study, we employ two approaches for measur-
ing the degree of overlap between the predicted and gold standard
text regions, looking at both the pixel overlap and the percentage
of shared region.

3.2.1. Measuring recall, precision and F-rate from shared pixels
One approach for measuring the overlap of two text detection

results is to measure the recall, precision and F-rate as determined
by shared pixels. More concretely, recall is defined as the fraction of
pixels in the gold standard text area that are contained in the (algo-
rithmically) detected text region. Precision is defined as the fraction
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of pixels in the detected text region that are also contained in the
groundtruth text area. And F-rate is defined as the harmonic
mean of precision and recall, i.e. F-rate ¼ 2 Precision Recall=
ðPrecisionþ RecallÞ.

3.2.2. Measuring Modulated Overlapping Area
Another intuitive measure of overlap between two text detec-

tion results is to calculate the overlapping area modulated by the
reciprocal of the area of the union of the two text detection results.
Mathematically, this measurement can be formulated as:

MOA,
AreaðText Regiongroundtruth

T
Text RegionalgorithmÞ

AreaðText Regiongroundtruth
S
Text RegionalgorithmÞ

ð1Þ

In the above, Text Regiongroundtruth stands for text region in the gold
standard corpus and Text Regionalgorithm stands for the algorithmi-
cally detected text region. The operator AreaðXÞ computes the area
of the region X in pixels. The range of the MOA measurement as de-
fined above is between 0 and 1. When Text Regiongroundtruth fully
agrees with Text Regionalgorithm, MOA reaches the maximum value
of 1. When Text Regiongroundtruth is entirely disjoint from
Text Regionalgorithm, MOA reaches the minimum value of 0.

4. Results

4.1. Text detection performance in biomedical images

We start with a qualitative assessment on the performance of
our text detection algorithm. To this end, we provide sample
images along with automatically detected text regions (Figs. 3
and 4). The blue boxes outline the detected text regions, while
the purple lines and areas indicate non-textual elements. A quali-
tative assessment of our approach is helpful for identifying the
strength and weaknesses of our algorithm. For example, we see
satisfactory text detection performance in Fig. 3b. However, two
strings ‘‘the’’ and ‘‘number’’ in the bottom horizontal label of the
image are mistakenly detected as one single text region ‘‘the num-
ber’’. In Fig. 4, we show the intermediate text detection results of
two rounds of the PTD algorithm, from which we can see that
our algorithm progressively refines its text detection results.

4.2. Quantitative evaluation and performance comparison with peer
text detection algorithms

To explore the effectiveness and advantages of our approach,
we also compare the performance of our algorithm with a few
state-of-the-art text detection algorithms. To this end, we identi-
fied four recently published algorithms for text detection, includ-
ing the DCT feature based text detection method proposed by
Goto [21], the text particle based multi-band fusion method for
text detection as proposed by Xu et al. [22], the visual saliency
based and biologically inspired text detection method proposed
by Fatma [23], and the fast text detection method proposed by Li
et al. [24]. When conducting our experiments to quantitatively
compare the performance of our algorithm with that of the four
peer methods, we obtained either the source code or the execut-
able program from the corresponding author(s). After that, we

worked directly with authors of these papers for running their
algorithms, ensuring that each algorithm is correctly configured
and properly executed during the evaluation experiment. Upon
reaching the final comparison results, we shared our intermediate
and final evaluation results with the authors.

Goto’s method [21] applies Fisher’s discriminant analysis to ex-
plore the frequency dependency of DCT-based features for identi-
fying the optimal frequency band for text detection applications.
Through their experiments, they empirically found out that a mix-
ture of high frequency and lower-middle frequency bands is most
effective for text detection from scene pictures. Based on this find-
ing, they redefined a DCT-based feature for more accurately detect-
ing text regions from natural scene images. Using their newly
defined DCT-based text detection feature, they eventually employ
an unsupervised thresholding based mechanism to differentiate
text regions from background image regions. Since their method
is targeted at detecting text from natural scene images, their algo-
rithm does not pay special attention to the affect of having sophis-
ticated text layout in an image. In fact, when text is arranged
following a distributed and nested structure, as is often true in bio-
medical images, the overall spatial frequency features exhibited in
the image region will be much affected. Under such circumstances,
determining text regions according to the overall spatial frequency
of a region tends not to be reliable. This fact limits the algorithm
performance on biomedical images, as demonstrated in our evalu-
ation results, shown below. In contrast to the cited DCT-based fea-
ture approach, our algorithm introduces a pivoting and iterative
procedure, which progressively divides an image region into sub-
regions. For each resultant image sub-region, we recompute the lo-
cal image features in the form of vertical and horizontal histograms
to adaptively analyze whether an image area contains text.
Through this active sub-division based search process, our method
can more thoroughly break down and capture the local image fea-
tures to recover scattered and nested image text, as seen in images
in biomedical publications.

Xu et al.’s method [22] aims at detecting text from images with
weak contrast and low text-background variance. To attain their
goal, they first analyze an input image using the YUV color space
via the Haar wavelet transformation. Given the derived wavelet
coefficients, they introduce text particles, according to the local
binary patterns demonstrated by the wavelet coefficients, which
are known as Local Haar Binary Patterns. Once the concept of text
particles is defined, their method further applies a density-based
multi-band fusion procedure to generate the final text detection
result. The main benefit of their approach for text detection is that
their method can robustly detect text regions regardless of the im-
age size, color, rotations, illuminations, and text-background con-
trasts. However, their method assumes that an input image does
not exhibit a sophisticated text layout and uses a single pass anal-
ysis. Their assumption generally holds for street side images of
signs and signages. However, for images in biomedical publica-
tions, which display distributed and nested text, the same assump-
tion does not hold.

While our histogram-based analysis’ text discrimination capa-
bility is below the method of [22], our overall text detection capa-
bility is not much affected. This observation can be intuitively
understood in that images carried in biomedical publications are

Table 1
Guidelines for manual identification of image text regions.

1. Image texts that form a coherent entity such as ‘‘bcl-xl (+)’’, ‘‘p < 0:01’’, and ‘‘S.E. RECOVERSOLUTION (i,j,k)’’ are considered individual text regions
2. Symbols that are attached to a word, such as brackets, forward slashes, and dashes, e.g. ‘‘MMC-transgenic’’ and ‘‘vif(+)’’ are part of the same term
3. Include Greek letters, and letters in subscript and superscript
4. Labels consisting of numbers or single letters are considered standalone image text regions
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Fig. 3. A text detection example produced by our algorithm along with the original
image. Image from [26].

Fig. 4. Text detection example with intermediate step-by-step text detection
results. Image from [27].
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usually carefully prepared so that they exhibit a good contrast and
a sharp text background. Therefore, the strength of their more
powerful text particle based multi-band fusion approach may not
be advantageous in the biomedical domain.

Fatma’s algorithm [23] treats the text detection problem as a
texture classification task, where the task of locating text regions
is formulated as finding regions whose texture is classified as text
texture, rather than background image texture. Fatma chose the
Support Vector Classification method to implement her texture
classifier. The main novelty of her work is the introduction of a
computational model of human visual attention for text detection,
which examines image features at various spatial scales and
modalities in a bottom-up manner. Like Xu et al.’s method [22],
Fatma’s algorithm also assumes that there is no nested text place-
ment. When text placement is distributed and nested, image sub-
regions are more likely to be misrecognized as carrying image tex-
ture, rather than text texture. More fundamentally, since Fatma’s
algorithmworks with texture features of an image region, her algo-
rithm is not directly concerned with how text strings are posi-
tioned inside a region; what matters to her algorithm is the
overall texture exhibited by a region, regardless of whether it is
composed by several text strings, by background image elements,
or by a mixture of both. In fact, if some distributed and nested text
happens to exhibit a texture that looks like a plausible image pat-
tern, her algorithm would readily recognize the region as a back-
ground image region.

Li et al. introduced a stroke filter based approach for text detec-
tion [24]. Their algorithm applies stroke filters to examine text
presence along the horizontal, vertical, left-diagonal, and right-
diagonal directions. Their work focuses on detecting text from TV
shots or video keyframes where almost all the text is placed fol-
lowing the four principal directions (vertical, horizontal, left-diag-
onal, and right-diagonal directions). This is probably because TV or
video frames are designed to be rapidly parsed by the audience.
Consequently, these frames, which typically carry only a very lim-
ited amount of text, are organized using quite simple and intuitive
text layouts to facilitate viewer’s rapid reading or scanning. In
comparison, images in biomedical publications are meant to be
read much more carefully, with image text being often distributed
and nested. As a result, Li et al.’s four directional stroke filter based
approach seems not sufficient to handle all the subtleties of
extracting text from biomedical images.

We also implemented two simplified version of our algorithm
to study the different components of our procedure. To distinguish
between these different versions of our algorithm, we call the iter-
ative text detection method introduced in Section 2.4 the multistep
method, which is denoted as ‘‘multiple steps’’. We also study the

performance of our method when the number of iterations is lim-
ited to one round. We call this modification of our algorithm the
one step iteration version, denoted as ‘‘one step’’. Finally, we also
implemented the classical histogram-based analysis without piv-
oting where the vertical histogram is derived for the full image
rather than for the segments from the horizontal histogram (see
Section 2.2). We refer to this naive version as ‘‘naive’’.

The results of these evaluations are shown in Table 2. We ob-
serve the following: The naive method outperforms the other peer
methods in terms of F-rate and MAO. The pivoting procedure im-
proves upon the naive version, with a performance increase of
0.045 F-rate and .051 MAO. The iterative procedure further im-
proves upon the pivoting result, both in terms of F-rate and
MAO. There is no performance increase when conducting more
than 2 iterations of our algorithm.

5. Discussion

5.1. Iterative PTD algorithm performance

Our evaluation showed that the iterative PTD algorithm per-
forms well on the gold standard text detection corpus (Table 2).
The naive (classical) version is outperformed by the pivoting algo-
rithm, which performs the vertical histogram on each image text
segment as determined by the horizontal histogram (Section 2.3
and Fig. 2). The pivoting algorithm subdivides image text regions
into subcomponents, instead of identifying large text blocks as in
the naive or classical approach. This sub-division into smaller units
seems to cope better with the distributed nature of the biomedical
image text. The iterative application of our algorithm results in fur-
ther performance gains. As discussed, iteration ensures the detec-
tion of nested image regions. As can bee seen in Table 2,
performance seems to stabilize after one iteration. This can be
understood as follows: Biomedical images seem to contain (on
average) one level of text nesting, which can be recovered by one
iteration of our PTD algorithm.

5.2. Comparison with prior work in text detection in images

Weconducted an extensive comparisonwith existing text detec-
tion algorithms. None of the tested algorithms were able to outper-
form the histogram-based text detection approach. It should be
noted that thesealgorithmsare optimized for aparticular textdetec-
tion task, whichmight be different from the one encountered in bio-
medical images. Consequently, the performance of these algorithms
as presented in the literature is higher than the numbers presented
in Table 2. Our results indicate that it is difficult to use these algo-
rithms on biomedical images without modifications.

For comparison,we quickly review the performance of the tested
algorithmson other image sets. In [21], the author reports algorithm
performance for two typical settings of his algorithm—a low fre-
quency mode and a high frequency mode. The evaluation is per-
formed on the ICDAR-set, which is from the TrialTrain data used in
the ICDAR 2003 Robust Reading Competition, see [25]. For the low
frequency mode, the average precision, recall and F-rate of his algo-
rithm is 32.6%, 91.9%, and43.4%, respectively. For the high frequency
mode, the average precision, recall and F-rate is 35.6%, 88.6%, and
45.1%, respectively. It should be noted that the [21] algorithm per-
forms well on our gold standard corpus in terms of recall. Precision
is low, though, indicating many falls positive calls.

[22] evaluated their method on the Location Detection Database
of ICDAR 2003 Robust Reading Competition Dataset, see [25]. The
precision, recall and F-rate on the dataset is 60%, 81%, 69%, respec-
tively. Finally, [24] reported the performance of their algorithm on
an image set consisting of 308 images from the Web, recorded

Table 2
Performance comparison between different text detection methods.

(a) Performance of four existing text detection methods

Measurement Existing methods

[21] [22] [23] [24]

Precision 0.291 0.110 0.116 0.457
Recall 0.980 0.464 0.528 0.210
F-rate 0.418 0.154 0.158 0.256
MOA 0.263 0.084 0.091 0.125

(b) Performance of our new text detection method

Our method

Naive One step Two steps Multiple steps

Precision 0.528 0.598 0.637 0.637
Recall 0.626 0.655 0.672 0.670
F-rate 0.519 0.564 0.600 0.600
MOA 0.332 0.383 0.430 0.429
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broadcast videos, and digital videos. The reported a recall and
accuracy of 91.1% and 95.8%, respectively.

5.3. Applications of our algorithm

The general category of target images suitable for our algo-
rithm’s processing includes images with distributed and nested
text use, as typically seen in biomedical images. Our biomedical
image text detection algorithm can benefit a number of applica-
tions in the field of biomedical information processing and man-
agement. Below we list some immediate applications:

� A first benefit is the improvement of biomedical OCR
performance.

� With accurate text region detection, we can highlight the loca-
tions of image text when retrieving biomedical images. With
this functionality, users can easily see the positions of their que-
rying text. This application is already available in EverNote
(www.evernote.com).

� Once text regions in biomedical images are detected, we can
more effectively compress these image regions by first recog-
nizing the text contents, and then representing these text areas
through vector graphics.

� Given the text region detection result, we can build some appli-
cation where a user hovers his or her mouse over a text term in
an image, to reveal more details related to the text term.

� Reliably detecting image text regions would allow accurate
analysis of document layout. This will enable automatic retrie-
val of images or documents according to their layout. A reliable
image/document layout analysis result provides many valuable
features for image/document clustering and categorization.

� Given the text region detection result, we can design high-level
image content understanding algorithms. For example, we may
analyze the spatial relationships between text terms occurring
in an image. This would provide clues to parse the graphical
messages embedded in the images, leading to more advanced
biomedical image retrieval and recommendation results.

6. Conclusions

Biomedical image search and mining is becoming an increas-
ingly important topic in biomedical informatics. Accessing the bio-
medical literature via image content is complementary to text-
based search and retrieval. A key element in unlocking biomedical
image content is to detect and extract (via OCR) text from biomed-
ical images, and making the text available for image search. In this
paper, we are concerned with text detection, i.e. finding the precise
areas of image text elements. We propose a new text detection
algorithm which is ideally suited for this purpose. The key feature
of our algorithm is that it searches for text regions in a pivoting and
iterative fashion. The pivoting procedure allows for recovery of dis-
tributed image text, and the iterative procedure uncovers nested
image information. We believe that these two algorithm features
are crucial for detecting text in biomedical images.
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A New Pivoting and Iterative Text Detection Algorithm

for Biomedical Images: Appendix A

Algorithm Details for our Pivoting Text Detection Algorithm

Inspired by the classical histogram analysis based text region detection

methods ([2, 1]), we describe a procedure for locating text regions in an image

through analyzing both the vertical and horizontal projection histograms of

an image:

• Input An input image I and a specified rectangular region R =

(left, right, top, bottom) inside the region of I.

• Function of the Procedure To detect all the text regions inside the

interior region R of the input image I.

• Output A collection of text regions {Ri
j} so detected where each Ri

j

is a text region detected from within the region R of the input image

I.

We can formally state the above procedure in the form of (1).

Text Region Detection Procedure : I,R → {Ri
j}. (1)

We will now look at the details of our text detection procedure.

1. First, we convert the input image I into black and white if it is orig-

inally a color image. We then apply a 3x3 median filter to blur the

Preprint submitted to Journal of Biomedical Informatics November 10, 2009



image background in order to make our text detection procedure less

sensitive to image noise.

2. Next, we detect edges in the converted black and white image. Cur-

rently, we use the classical Sobel operator for this purpose due to its

simplicity and satisfying performance in our experiments. Other edge

detectors, such as Canny and Canny-Deriche edge detectors, can also

be used without noticeably affecting the overall performance of our al-

gorithm. We call the resultant image from this step the edge image of

the original input image I, which is denoted as Î.

3. We then compute the vertical projection for each pixel in the edge

image Î to derive Î’s horizontal histogram. More concretely, given

the width w and height v (both in pixels) of Î, the horizontal projec-

tion histogram of the edge image Î is denoted as Hh(i) (i = 1, · · · , w)

where Hh(i) records the number of edge pixels on the vertical line

that stays i pixels away from the left boundary of the image, i.e.

Hh(i) = |{pixel(i, y)|pixel(i, y) is an edge pixel in Î; y = 1, · · · , v}|.
Here pixel(x, y) denotes the pixel whose horizontal and vertical co-

ordinates are x and y respectively; and |X| returns the cardinality

of the set X. The overall horizontal histogram of the edge image Î
is thus represented as a w dimensional vector in the form of Hh �
[Hh(1), · · · ,Hh(w)].

4. We then segment the derived horizontal projection histogram Hh ac-

cording to a preset segmentation threshold τh. To carry out this seg-

mentation, we first derive a binary sequence Bh according to the hori-

zontal projection histogram Hh. Here we define Bh to be a w dimen-
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sional vector in the form of Bh � [Bh(1), · · · ,Bh(w)]. For each Bh(i),

it is derived as follows:

Bh(i) �

⎧⎨
⎩

1 if Hh(i) ≥ τh;

0 otherwise.
(i = 1, · · · , w) (2)

We then detect all the segments of consecutive 1’s in Bh and denote

the resultant sequence of segments as Seg1, · · · , Segn where we assume

there are n such resulting segments. Here Segi corresponds to the i-th

segment of consecutive 1’s in Bh. For each such segment Segi, we rep-

resent its left and right boundaries in the binary sequence Bh as lefti

and righti respectively. That is, Segi corresponds to the block of con-

secutive 1’s which starts at the lefti-th component in Bh and ends at

the endi-th component in Bh. It is easy to see that righti−1 < lefti as

otherwise Segi−1 should have been joined with Segi. Also, if any resul-

tant segment’s width is less than 3 pixels apart, i.e. lefti−righti−1 < 3,

we will eliminate this segment, as such a segment probably correlates

to an edge or a boundary in the input image rather than a text region

since with this narrow width, texts are unlikely to be eligible.

5. For each segment Segi obtained from the previous step, we can locate

a rectangular sub region R(i) in the edge image Î. The left, right,

top, bottom boundaries of the region correspond to the lines x = lefti,

x = righti, y = 1, and y = v in the image Î respectively. And all

the pixels falling between these boundaries constitute the region R(i),

which is denoted as R(i) � {pixel(x, y)|lefti � x � righti; 1 � y � v}.
For each so located region R(i), we then derive its vertical projection

histogram, which is denoted as Hi
v where the subscript v indicates

3



it is a vertical histogram and the superscript i indicates this vertical

histogram corresponds to the region R(i). Such a vertical histogram

Hi
v is represented as a v dimensional vector in the form of Hi

v �
[Hi

v(1), · · · ,Hi
v(v)] where Hi

v(j) records the number of edge pixels on

the horizontal line which stays j pixels above the bottom of the image,

i.e. Hi
v(j) = |{pixel(x, j)|pixel(x, j) is an edge pixel in Î; lefti � x �

righti}|. This way of deriving the vertical histogram vector Hi
v is very

similar to the process for deriving the horizontal histogram vector Hh

as examined earlier in step 3.

6. Once the vertical projection histogram Hi
v has been derived, we can

then segment the image region R(i) following a similar routine as em-

ployed in step 4 in the above. That is, we first derive a binary sequence

Bi
v � [Bi

v(1), · · · ,Bi
v(v)] according to Hi

v as follows:

Bi
v(j) �

⎧⎨
⎩

1 if Hi
v(j) ≥ τv;

0 otherwise.
(j = 1, · · · , v) (3)

where τv is a pre-selected segmentation threshold.

Our algorithm then detects segments of consecutive 1’s in Bi
v. The

resultant sequence of such segments are denoted as Segi
1, · · · , Segi

mi

assuming there are mi segments of consecutive 1’s detected from Bi
v

in total. For each Segi
j, the i-th segment of consecutive 1’s in Bi

v, we

represent its left and right boundaries as bottomi
j and topi

j respectively.

That is, Segi
j corresponds to the block of consecutive 1’s which starts

at the bottomi
j-th component in Bi

v and ends at the topi
j-th component

in Bi
v. It is easy to see that topi

j−1 < bottomi
j as otherwise the two

segments Segi
j−1 and Segi

j should have been merged together. Similar
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to the small segment elimination process in step 4, if any resultant

segment’s height is less than 3 pixels apart, i.e. bottomi
j − topi

j−1 < 3,

we will eliminate this segment, as such a segment probably correlates

to an edge or a boundary in the input image rather than a text region

since with this narrow height, texts are unlikely to be eligible.

7. Every pair of the segments Segi and Segi
j (j = 1, · · · ,mi) derived in step

4 and 6 in the above jointly defines a rectangular region Ri
j inside the

original image I, whose left, right, top, bottom boundaries correspond

to the lines x = lefti, x = righti, y = bottomi
j and y = topi

j in I
respectively. That is, Ri

j � {pixel(x, y)|lefti � x � righti; bottom
i
j �

y � topi
j}. Each such region serves as a candidate text region. For

every Ri
j, we compute a corresponding minimum coverage bounding

box, which is denoted as X i
j . Initially, the boundaries of the bounding

box X i
j are set as the boundaries of the rectangular region Ri

j. We then

optimize positions of these boundaries through a two-stage expansion

and shrinking process. In the first stage, the bounding box will be

minimally expanded so that all the edge pixels which are connected to

at least one edge pixel inside the text region Ri
j will be covered by the

expanded bounding box. And then in the second stage, the bounding

box will be maximally shrunk so that the area of the bounding box is

minimized without excluding any edge pixels originally contained in the

region Ri
j. After this two-stage process searching for optimal boundary

positions for Ri
j, we add the bounding box region X i

j into the result

text region collection {R}. All the text regions so derived constitute

the result text region set R, which are detected from the interior region
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R of the input image I.
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A New Pivoting and Iterative Text Detection Algorithm

for Biomedical Images: Appendix B

A Text Region Detection Example using our Algorithm

In Figure 1, we show the working of our algorithm on a sample image.

Given a raw input image (a), our algorithm first detect the layout elements

such as lines and panel boundaries for layout purpose (b). After removing

these layout elements from the raw image (c), we apply a Sobel edge detector

to derive the edge image (d). We then construct the horizontal histogram

for the edge image (e). Through segmenting the horizontal histogram, we

detect three horizontal text regions in the image, which are marked Region

1 to 3 (e). According to these horizontal ranges, we can correspondingly

detect three text regions in the image (f). Starting with Region 1 in (f),

we construct a vertical histogram, shown in (g-1). We proceed identically

for Regions 2 and 3 in (f), obtaining vertical histograms as shown in (g-

2) and (g-3), respectively. Segmenting the vertical histogram in (g-1), we

obtain a vertical text region range. Then, the horizontal region range marked

“Region 1” in (e) and the vertical region range marked “Region 1” in (g-1),

are combined to construct a refined text region for Region 1 in (f), shown

in (h-1). We proceed similarly for Regions 2 and 3 to receive refined image

text regions (h-2 and h-3). Text regions shown in (h-1) and (h-3) can not be

further refined and are flagged by the algorithm.
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The subregion shown in (h-2) can be further refined through an additional

round of our PTD algorithm (i-1). A horizontal histogram for Region 1 in (h-

2) detects further image text segments (j-1). A similar result is obtained for

region 2 in (h-2), see (i-2) and (j-2). Finally, we implemented a naive intensity

based image block detection procedure, which marks non-text region at the

end of each iteration. Running this procedure helps us remove the large

none-areas inside Region 3 and Region 4 in (h-2). These areas are marked

in pink in (k), and are subtracted in the final output image (l).
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(a) Raw image (b) Detected layout elements

(c) After removing layout elements (d) Edge image for (c)

(e) Horizontal histogram for (d) (f) Horizontal segmentation result for (c)

(g-1) Vertical histogram (g-2) Vertical histogram

for Region 1 in (f) for Region 2 in (f)

(to be continued on the next page)
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(g-3) Vertical histogram for Region 3 in (f)

(h-1) Segmentation result (h-2) Segmentation result (h-3) Segmentation result

for Region 1 in (f) for Region 2 in (f) for Region 3 in (f)

(Image boundaries are indicated in green.)

(i-1) Horizontal histogram (i-2) Horizontal histogram

for Region 1 in (h-2) for Region 2 in (h-2)

(to be continued on the next page)
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(j-1) Segmentation result (j-2) Segmentation result

for Region 1 in (h-2) for Region 2 in (h-2)

(k) The text detection result (l) The final text detection result

after all iterations

Figure 1: A step-by-step text detection example.
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A New Pivoting and Iterative Text Detection Algorithm

for Biomedical Images: Appendix C

Below we will show more text detection examples.
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(a) The original image (b) Text detection result after

the 1st round, i.e. the final result

Figure 1: A text detection example from [9].

(a) The original image (b) Text detection result (c) The final text

after the 1st round detection result

Figure 2: A text detection example from [3].
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(a) The original image (b) Text detection result after the 1st round

(c) Text detection result after the 2nd round (d) Text detection result after the 3rd round

(e) The final text detection result

Figure 3: A text detection example from [7].
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(a) The original image (b) Text detection result (c) Text detection result

after the 1st round after the 2nd round

(d) Text detection result (e) Text detection result (f) Text detection result

after the 3rd round after the 4th round after the 5th round

(g) The final text detection result

Figure 4: A text detection example from [4].4



(a) The original image (b) Text detection result after the 1st round

(c) Text detection result after the 2nd round (d) Text detection result after the 3rd round

(e) The final text detection result

Figure 5: A text detection example from [10].
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(a) The original image (b) Text detection result after the 1st round

(c) Text detection result after the 2nd round (d) Text detection result after the 3rd round

(e) Text detection result after the 4th round (f) The final text detection result

Figure 6: A text detection example from [8].
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(a) The original (b) Text detection (c) Text detection (d) Final text

image result (1st round) result (2nd round) detection result

Figure 7: A text detection example from [1].

(a) The original image

(b) Text detection result after the 1st round

(c) The final text detection result

Figure 8: A text detection example from [5].
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(a) The original image (b) Text detection result (c) Text detection result

after the 1st round after the 2nd round

(d) Text detection result (e) Text detection result (f) The final text

after the 3rd round after the 4th round detection result

Figure 9: A text detection example from [2].
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(a) The original image (b) Text detection result (c) Text detection result

after the 1st round after the 2nd round

(d) Text detection result (e) Text detection result (f) The final text detection

after the 3rd round after the 4th round result

Figure 10: A text detection example from [6].
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A New Pivoting and Iterative Text Detection Algorithm

for Biomedical Images: Appendix D

In Figures 1–8, we show some more example text detection results by our

algorithm along with the original image.
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(A-I) raw image (A-II) text detection result

(B-I) raw image (B-II) text detection result

(C-I) raw image (C-II) text detection result

(D-I) raw image (D-II) text detection result

Figure 1: Some example text detection results by our algorithm along with the original

image. (A) is from [26]; (B) is from [3]; (C) is from [16]; (D) is from [8].
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(A-I) raw image (A-II) text detection result

(B-I) raw image (B-II) text detection result

(C-I) raw image (C-II) text detection result

(D-I) raw image (D-II) text detection result

(E-I) raw image (E-II) text detection result

Figure 2: Some example text detection results by our algorithm along with the original

image. (A) is from [13]; (B) is from [1]; (C) is from [23]; (D) is from [21]; (E) is from [15].
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(A-I) raw image (A-II) text detection result

(B-I) raw image (B-II) text detection result

Figure 3: Some example text detection results by our algorithm along with the original

image. (A) is from [32]; (B) is from [14].
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(A-I) raw image (A-II) text detection result

(B-I) raw image (B-II) text detection result

(C-I) raw image (C-II) text detection result

(D-I) raw image (D-II) text detection result

Figure 4: Some example text detection results by our algorithm along with the original

image. (A) is from [24]; (B) is from [30]; (C) is from [22]; (D) is from [29].
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(A-I) raw image (A-II) text detection result

(B-I) raw image (B-II) text detection result

(C-I) raw image (C-II) text detection result

(D-I) raw image (D-II) text detection result

Figure 5: Some example text detection results by our algorithm along with the original

image. (A) is from [10]; (B) is from [28]; (C) is from [31]; (D) is from [2].
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(A-I) raw image (A-II) text detection result

(B-I) raw image (B-II) text detection result

(C-I) raw image (C-II) text detection result

(D-I) raw image (D-II) text detection result

(E-I) raw image (E-II) text detection result

(F-I) raw image (F-II) text detection result

Figure 6: Some example text detection results by our algorithm along with the original

image. (A) is from [7]; (B) is from [17]; (C) is from [6]; (D) is from [25]; (E) is from [4];

(F) is from [27].
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(A-I) raw image (A-II) text detection result

(B-I) raw image (B-II) text detection result

(C-I) raw image (C-II) text detection result

(D-I) raw image (D-II) text detection result
Figure 7: Some example text detection results by our algorithm along with the original

image. (A) is from [19]; (B) is from [20]; (C) is from [12]; (D) is from [5].
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(A-I) raw image (A-II) text detection result

(B-I) raw image (B-II) text detection result

(C-I) raw image (C-II) text detection result

Figure 8: Some example text detection results by our algorithm along with the original

image. (A) is from [11]; (B) is from [18]; (C) is from [9].
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