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41

ABSTRACT42

In this paper, we present a ROad SEgment-based emission model (ROSE) for transportation Green House Gas 43

(GHG) emissions estimation. The objective of this study is to provide a framework for quickly estimating 44

traffic-related GHG emissions and analyzing its spatiotemporal distribution and variation based on real-time 45

traffic data. The model has carried out a combination of Intelligent Transport System (ITS) technology, 46

Geographic Information System (GIS) technology, and the International Vehicle Emission Model (IVE). In the 47

ROSE model, the ITS’ floating car data (FCD) and loop detector data (LDD) are used as the model input. The IVE 48

model is used for providing microscopic vehicle emission rates; and GIS is not only used as a database exchanger, 49

but also used as a computation and a visualization tool in the ROSE model. This paper will discuss two 50

fundamental works conducted in our ROSE model research project: 1) ITS real-time traffic data collection and 51

geographic-related data unification; and 2) vehicle driving activity generation and road-segment based CO252

emission computation. To demonstrate the effectiveness of the ROSE model, we apply this model in a case study 53

for estimating the daily CO2 emissions generated from the highway transportation of Beijing, China during the 54

year 2008. The result shows that the ROSE model can provide micro-level, highly accurate, and real-time GHG 55

emission for the whole urban area (such as Beijing city).  56
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57

1 INTRODUCTION 58

Global climate change-induced problems have become major critical threats to life on Earth. Greenhouse Gas 59

(GHG) emission has been considered as one of the key contributors to the threats. Reducing GHG emissions and 60

keeping the anthropogenic CO2 emission rate at a reasonable level is a great challenge. In recent years, CO261

emissions from the transportation sector have been given significant attention (IPCC, 2007). It has been estimated 62

that 23% of the world, 25% of the European, or 33% of the United States total anthropogenic CO2 emissions is 63

from the transportation sector. Road transportation currently accounts for 74% of total transport CO2 emissions 64

(IPCC, 2007; Ribeiro et al, 2007; Davis et al., 2005). With the remarkable development of urban economy and 65

expansion of population, the CO2 emissions from road transportation continue to rise.  66

Accurate quantitative measurement of urban road traffic CO2 daily emission is critical in making 67

effective policy to control transportation related CO2 emissions (Carmichael et al., 2008; Escobedo et al., 2008; 68

Barth et al., 2008). Currently, a considerable amount of on-road vehicle emission models have been developed to 69

estimate and predict the transportation GHG emissions, at macroscopic, mesoscopic and microscopic levels 70

(Sharma et al., 2001; Rakha et al., 2003; Abo-Qudais et al., 2005). However, when applying such models in the 71

real world, one of the sources of model uncertainties is input information (Borrego et al., 2003). For each model, 72

there are many parameters (e.g., vehicle engine technology conditions, vehicle starting and running activities, 73

road conditions, weather conditions, et al.) (Barth et al., 1996) that need to provide corresponding proper 74

experimental data.  75

The International Vehicle Emission (IVE) (Davis et al., 2005), described as an improved estimation tool for 76

mobile source emissions, is specifically designed to improve the flexibility needed by most developing countries 77

to address mobile source air emissions, including a large range of criteria pollutants, GHGs, and toxic emissions 78

(Lents et al., 2004; Davis et al., 2004; Liu et al., 2005; Wang et al., 2006; Liu et al., 2007). Compared to other 79

model-based emission models, the IVE model obtains high precision on emissions modeling while reducing some 80

unnecessary input information. However, like the other models, one difficulty when applying the IVE model to 81

GHG estimation is to obtain detailed and accurate data about vehicle activities. Two main approaches are used to 82

deal with this problem. One approach is to directly input the invested traffic activity data into the IVE emission 83

models. The other approach is to integrate the emission models with the dynamic traffic simulation model.  84

For the first approach, most research is designed to only collect representative traffic information at specific 85

time periods and places (Liu et al., 2007). Currently, the solution is to use statistical tools to derive vehicle driving 86

patterns from sample data and then extrapolate to cover the entire urban area. However, the results are static and 87

cannot vary with sudden changes in traffic conditions since the investigation is subject to limited investigation 88

locations and time periods. Moreover, extrapolating the sampling statistical results to represent the total urban area 89

may introduce uncertainties. In addition, this investigative approach requires a large amount of manpower, 90

material, and financial resources while the efficiency of the operations is relatively low. The dynamic traffic 91

simulation approach can provide the time dependent Origin-Destination (O-D) travel demand matrixes while 92

providing detailed traffic network configuration, which is commonly defined in terms of geometry, link capacities, 93

free-flow speeds, and so on (Gomes et al., 2004). Moreover, the dynamic model can simulate each vehicle’s 94

instantaneous running activities, including acceleration and deceleration operations. INTEGRATION (Rakha et 95

al., 2004), TRANSIMS (Zietsman et al., 2001), and VISSIM (PTV 2005) are the three major representative 96

integrated models. However, modeling applicability is the biggest issue for these models since there are huge 97

traffic characteristic differences among different nations and areas. Some researches (Min et al., 2008) have 98

argued that current existing traffic simulation models are not suitable for simulating actual transportation 99



3
Li, Chang, Cui, Tang, Li & Cheng

conditions, especially the mixed traffic in the downtown area in China.   100

Additionally, these main models have seldom been applied to characterize spatial and temporal 101

distribution and variation of traffic-related CO2 emissions (Gregg et al., 2008). In most cases, estimating the total 102

quantity of the emissions is the main objective of these models and attracts tremendous attention. However, 103

research on the characteristics of spatiotemporal distribution and variation of traffic-related CO2 emissions could 104

provide the ability to understand the impact of traffic load and variations on CO2 emissions volume and prioritize 105

emission control and reduction strategies based on location. 106

At present, with the development of intelligent transportation systems (ITS) in many urban areas, large 107

quantities and varieties of real-time traffic data collected by inductive loop, video, radar, infrared ray, and floating 108

cars have been obtained (Zhang et al., 2007). It becomes possible to obtain the real-time transportation conditions 109

over the whole urban area from these data. In this paper, we present an integrated model to support area wide 110

real-time transportation CO2 emissions estimation. This study provides a framework for closely integrating the 111

ITS technologies, GIS technologies and IVE models for GHG emission estimation. Within the framework, ITS 112

technologies are applied to collect large-area real-time traffic data and generate the needed vehicle driving 113

activities profiles. GIS technologies act as a database exchanger to organize all geographic-related information. 114

The GIS toolset is also used to calculate CO2 emissions in road-segment, and express the spatiotemporal 115

distribution of the transportation CO2 emissions in the urban area. The IVE model is imported to provide 116

microscopic vehicle CO2 emission rates. This paper is organized as follows. Section 2 introduces our approach on 117

how to develop the integrated model. Section 3 describes our data preparation efforts. Section 4 analyzes our case 118

study by using the ROSE model estimating the highway transportation GHG emissions in Beijing, China, in Dec. 119

2008. Conclusions are presented in Section 5. 120

121

2 MODEL DESCRIPTIONS 122

2.1 Framework of the ROad SEgment based Transportation CO2 Emission Model  123

ROSE is an integrated model that seeks to carry out a combination of ITS technologies, GIS technologies and IVE 124

models. ROSE facilitates the modeling of transportation CO2 emissions production through integration of two 125

main inter-linked steps. These are: 1) ITS real-time traffic data collection and geographic-related data unified 126

organization; and 2) vehicle driving activities generation and urban area transportation CO2 emissions 127

computation.  128

The first step is to utilize GIS technologies to effectively organize and manage the ITS collected real-time 129

traffic data such as floating car data (FCD), loop detector data (LDD), other geographic-related data (e.g., urban 130

road network, digital elevation model (DEM), and aerial images) and statistical data (e.g., urban vehicle 131

technologies distribution information). All these data will be given geographic coordinate information for 132

identification and location. A three-level hierarchical structure (road centerline level-road segment level-road lane 133

and road raster level) is specially designed for uniformly organizing these different types of data from the aspect of 134

the spatial structure.  135

The second step is to utilize the IVE model to generate vehicle patterns, and vehicle specific power/engine 136

stress bins distribution profiles from the well organized sampled real-time traffic data. Since these profiles could 137

be resolved to each road segment, vehicle CO2 emissions could be estimated in road segment partitions.  138

The final step is to take the ROSE model and apply it for estimation and analysis of the temporal and spatial 139

distribution and variation of urban area transportation CO2 emissions. GIS visualization tools can be used for CO2140

emissions expression.  141

The structure of ROSE is presented in FIGURE 1 and described in detail in the following sections. 142
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143

FIGURE 1 Main Framework of the ROad SEgment Based Transportation CO2 Emission Model. 144

145

2.2 The Structure of ITS Real-time Traffic Data 146

In recent years, the floating-car system and fixed embedded loop detectors have been used as a way to collect 147

transportation information in many nations and regions across the world. The data collection styles of floating cars 148

and loop detectors are different - the former is mobile, while the latter is fixed. Furthermore, there are great 149

differences in the aspects of recorded content and sampling time frequency. The probe data is recognized as a tool 150

to describe the instantaneous vehicle activities, while the loop detector is suitable to record the traffic flow, 151

occupancy, and average speed on a lane scale during a fixed time period. The sampling time interval (e.g., 1 s, 10 152

s, 30 s, 40s, 60s or more) of GPS data is mainly determined by subjective experiences for different applications. 153

For the loop detectors, the sampling time intervals are generally fixed (e.g., 30 s, 60 s, 120s or more). Thus, when 154

organizing and applying these heterogeneous traffic data, there is a need to unify traffic data from the perspectives 155

of both spatial and temporal structure.  156

Based on the Map Matching Algorithm (Quddus et al., 2003), the floating car data and the loop detector 157

data with the geographic information (e.g., longitude, latitude, and height) can be projected and matched with the 158

road network and each data will be correlated with only one road unit. Since the traffic conditions in different road 159

sections are different, we divide the road network into a great deal of road segments of suitable length. Each road 160
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segment is considered as one road block holding the floating car and loop detector datasets. From the outside road 161

segment, both data are unified with the same spatial structure. Each dataset depicts the traffic conditions of the 162

corresponding road segment. The inside structures of both data also need to be well organized. Details are 163

described in the following sections. Because the sampling frequency of the loop detectors is lower than the 164

sampling frequency of the floating cars, the fixed sampling time interval of the loop detectors will be chosen to be 165

the basic time unit for data integration.  166

167

2.2.1 Horizontal Aggregation for Raster-Based Floating Car Data 168

The floating cars record the vehicular running status and the instantaneous position of the car. Frequently, 169

compared to the adjacent vehicles, one vehicle shows a similar moving pattern. One virtual point can be used to 170

represent the behaviors of the adjacent points in a relatively small section on the road. This section is defined as a 171

road raster and can be generated through the road network Rasterizing Algorithm. When there are more than one 172

floating car points matched into the same raster, the virtual point speed of the road raster is estimated by using the 173

Exponential Smoothing Method (Arroyo, 2007). The abstract form of the Exponential Smoothing Method is: 174

�
1 2 1 2( ) ( ), ( ), ..., ( ), ( 1), ( 1), ..., ( 1)i i i ip i i iqV k F V k V k V k V k V k V k       (1)  175

where � ( )iV k is the smooth average speed, ( )iwV k is the velocity of the wth sampling floating car during time interval 176

k, p is the total number of the sampling points matched to the road raster i during time interval k, and q is the total 177

number of the sampling points matched to the road raster i during previous time interval k-1.The detailed equation 178

of � ( )iV k is as follows:179

� �

�

( )

1

1 1

( ) (1 ( )) ( 1) ( ) ( )

1( ) , ( ) ( )
( )

(1 ) , (1 )
( )( ) ( 1),

1 ( )

i i i

n k
k

i ij
jk

k k k k k k

k i i

V k f k V k f k V k

Ef k r V k V k
A n k

E r e r E A r e r A
n ke V k V k r

n k

             (2) 180

where ( )iV k is the arithmetic average speed, ( )f k  is weighting coefficient, kE is defined as the smooth error, kA is 181

defined as the smooth absolute error, ke is defined as the error of estimation, and ( )n k is the number of the 182

sampling floating car data points matched to raster i during time interval k.183

In this method, each road raster is assigned a smooth average velocity during the time interval k. The adjacent 184

road raster will then be horizontally aggregated together as the road segment. The velocity dataset of the vehicles 185

in the road segment can be generated by a horizontally linear scan, represented by mathematic Equation 3: 186

� � � � �
1 2 3[ , ] [ , ] [ , ] [ , ] [ , ]

1

[ , , , ... ]j j j j j

i n

n
t t t t t
c R c R c R c R c R

i

V V V V V                     (3) 187

where n is the total count of the road raster of a road segment, 
iR is the ith road raster, and 

jt is the time period. The 188

dataset can be processed to invert the speed fluctuation in the road during a given time period. 189

190

2.2.2 Vertical Aggregation for Lane Based Loop Detector Data191

The loop detector data (LDD) reports the directional lane-by-lane value of the number of vehicles crossing the 192

lane in a given time period. These data, filtrated by the loop detector ID number and the traffic flow direction 193

identification, can be vertically aggregated as the dataset for each road segment:  194
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� � � � �
1 2 3[ , ] [ , ] [ , ] [ , ] [ , ]

1

[ , , , ... ]j j j j j

i m

m
t t t t t
c L c L c L c L c L

l

F F F F F
                    

(4) 195

where, m is the total lane number of each road segment, 
iL is the ith lane, and 

jt
is the time period. The dataset can be 196

processed for computing the average road traffic flow. 197

198

2.2.3 Hierarchical Road Segment Based Road Network Model199

In this paper, a hierarchical structure of the road network integrated with the real-time traffic data is proposed as 200

shown in FIGURE 2.201

202
FIGURE 2 Hierarchical Structure of the Road Network. 203

The characteristics of each hierarchical structure are illustrated as follows: 204

Level 1: Road Centerline. This provides an abstract structure of the road network by using a single line to 205

depict the road and treats a cross or flyover as several links and nodes. Two road centerlines with different 206

directions are aggregated into one whole street. The road is a collection of lanes with the same flow direction. The 207

direction from or nearly from east to west or south to north is recoded as "0", otherwise is "1". The one-way street 208

is also depicted as two road centerlines, but recorded as the same direction. 209

Level 2: Road Segment. Road segment is an area based structure with a certain width. The spatial 210

structure and topology is derived from the road centerline based road network while the length is determined by 211

the distribution of the loop detectors. Each road segment is a collection of the horizontally aggregated road raster 212

and vertically aggregated lane segments. It is the basic unit for the CO2 amount, and density computation and 213

expression. 214

Level 3: Lane Segment and Road Raster. Both the lane segment and road raster are virtual structures of 215

the road network. They are used for traffic data organization and management, CO2 amount and density 216

computation though they are not the basic unit for expression. Lane segment and road raster are the medium for 217

correlating the road network with the real-time traffic data. Loop detector and floating car data series described in 218

the above are recorded as the attributes of the lane segment and road raster, respectively.  219

220

FIGURE 3 shows the process of integration of road network and real-time traffic data. First, the road 221

network is converted from the structure of road centerline to the structure of the road segment which is aggregated 222

by the lane segments and road raster. Each road raster and lane segment is then mapped with the real-time floating 223

car data and loop detector data, respectively. 224

Floating Car Data 

Loop Detector Data 
Road Centerline 

Road Raster 

Lane Segment 

Road Segment 

Road Segment Node 

Road Centerline Node 
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225

FIGURE 3 Process of Integration of Road Network and Real-time Traffic Data. 226

227

2.3 Emissions Estimation 228

229

2.3.1 Overview of IVE Model Technology  230

Compared to other familiar vehicle emission models, the IVE model (Davis et al., 2005) adopts binning 231

methodology to describe and characterize driving patterns. The binning methodology is based on two parameters: 232

vehicle specific power (VSP), and engine stress (ES). These two parameters indicate the relationship between the 233

vehicle’s instantaneous working condition and the emission rate. VSP is the main indicator of vehicle based 234

emissions rate, which comprehensively considers most key factors (e.g., vehicle instantaneous speed and 235

acceleration, road grade, road slope, wind, etc.) that influence the vehicle emission amount. The VSP equation is: 236

2 6132 302* 1.1*10 * * 9.81*Atan( ( ))VSP v v v a Sin Grade             (5)237

where v is the vehicle instantaneous speed (m/s), a is the vehicle instantaneous acceleration (m/s2), and grade is 238

the road grade in radians. 239

Vehicle stress (STR) uses an estimate of vehicle RPM combined with the average of the power exerted by the 240

vehicle in the 15 seconds before the event of interest. The STR equation is: 241

0.08*STR RPM PreaveragePower              (6) 242

Except the environment factors, VSP and STR values can be easily calculated from second-by-second 243

vehicle route points. The VSP and STR values are broken into 20 VSP bins and 3 STR bins. In total, each point 244

can be allocated into one of the 60 driving bins. For each type of vehicle technology, there are 60 adjusted 245

emission rates corresponding to 60 bins.  246

To present a city’s emission inventory, one important step is to present the distributions of driving activities 247

that occur in each driving bin.  248

2.3.1 Road-segment Fleet Driving Activities Generation  249

It is obvious that using 1-Hz GPS data is adequate for describing the high-resolution driving activities of the 250

vehicles including the immediate acceleration or deceleration. Such sampling frequency can provide enough 251

sensitivity to detect the micro change of the vehicle’s velocity. However, completely collecting the high- precision 252

data set covers the entire urban area and is difficult and very time consuming. One solution is to use the 253

interpolation method to revert the large area-covered but relatively low-frequency sampling FCD into the 254

vehicle’s real continuous running activities. The fundamental idea of cubic spline interpolation is based on the 255

Road Centerline Road Segment 

Road Centerline Node Road Segment Node 

Lane Segment Road Raster 

Loop Detector Data Floating Car Data 

Level 1 Level 2 

Level 3

Road Network 

Traffic Data 
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engineer’s tool used to draw smooth curves through a number of points. The numerical routine is to fit n equations 256

subject into the boundary conditions of n+1 data points over n intervals. Cubic spline interpolation method must 257

satisfy three conditions as follows: 258

1. � ( )V x will be continuous on the interval 1, nx x ;259

2. � ( )V x is differentiable, and � ( )V x will be continuous on the interval 
1, nx x ;260

3. � ( )V x is also twice differentiable, and � ( )V x will be continuous on the interval 
1, nx x .261

The assumed form for curve fit for each segment is defined as a separate third degree polynomial iv , which 262

is defined by 263

3 2( ) ( ) ( ) ( )

1,2,...
i i i i iv x a x x b x x c x x d

for i n
           (7) 264

where the spacing between the successive data points is 1i i ih x x265

To make the curve pleasingly smooth across the interval, the function value, the 1st derivative, and the 2nd266

derivative must be equal at the interior node points for adjacent segments; that is, 267

( 0) ( 0)

( 0) ( 0) 1,2,..., 1

( 0) ( 0)

i i

i i

i i

v x v x

v x v x for i n

v x v x

           (8) 268

Define ( ) ( 0,1,2,... )i is x M for i n , where iM  is a one degree polynomial, for the ith segment, the governing 269

equation is: 270

1 1 1 1 1 12( ) 6( [ , ] [ , ])

1, 2,... 1
i i i i i i i i i i ih M h h M h M f x x f x x

for i n
          (9) 271

where 1[ , ]i if x x is the slope for the line across the start and end point of the ith road segment; 0M  and 
nM  are zero 272

for the natural spline boundary condition.273

The fundamental idea underlying the cubic spline interpolation is to draw a smooth fleet speed 274

fluctuation curve through the virtual points aggregated in a road segment. The numerical routine is to fit n275

equations subjected to the boundary conditions of 1n virtual points over the n road rasters. Based on the cubic 276

spline interpolation theory, once the dataset �
[ , ]

1

j

i

n
t

c R
i

V is obtained, the continuous fleet speed fluctuation curve 277

between the road raster in a road segment scale can be fitted.  278

279

2.3.2 Road-segment Vehicle Kilometers Traveled (RS-VKT) 280

Vehicle miles traveled (VMT) or vehicle kilometers traveled (VKT) is commonly considered as a major factor in 281

determining the emission amount in urban areas. In many recent applications (Smit et al., 2008; Wang et al., 2009), 282

VKT is an uncertain factor since the origin-destination profiles are generated from the traffic assignment models. 283

However, for a road segment, based on the real-time loop detector data, VKT estimation results become accurate 284
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because VKT is correlated to the traffic volume and the road segment length. In the last section, the traffic volume 285

of the road segment is described as a dataset of the flows � � � � �
1 2 3[ , ] [ , ] [ , ] [ , ] [ , ]

1

[ , , ,... ]j j j j j

i m

m
t t t t t
c L c L c L c L c L

l

F F F F F . Accordingly, the VKT 286

for the road segment can be easily computed using Equation 10. 287

�
[ , ] [ , ] [ ] [ , ] [ ]

1
*

l

m
t

c t c t c c L c
l

VKT Flow Length F Length              (10)  288

289

2.3.3 Road-segment CO2 Emissions Estimation 290

Within the ROad-SEgment CO2 Emissions Estimation (ROSE) model, the total emission amount is the summary 291

of each road segment’s CO2 emission volume generated by vehicles. The road segment is adopted to be the basic 292

computational unit in the ROSE model. As shown in Equation 11, based on the IVE model, the overall CO2293

running emissions (in grams) for road segment c during specific time period t is quantified by multiplying the 294

comprehensive CO2 emission rate by the distance traveled and by the ratio of the average velocity of the standard 295

driving cycle and the modeled cycle. The comprehensive emission rate is the adjusted emission rate multiplied by 296

the fraction of the travel and the amount of the driving pattern for each technology (ISSRC & UCR, 2008). 297

[ , ] [ , ]
[ , ]

60

[ , ] [ , , ] [ ]
1

* *

( * )

FTPrunning comprehensive
c t c t

specfic c t

comprehensive
c t c t b b

b

V VKTE Q
V

Q f Q

              (11) 298

where, FTPV  is the average velocity of the standard driving cycle (a constant (g/km)), [ , ]specfic c tV is the average 299

velocity (g/km) of the total vehicle trips, VKT  is the vehicle kilometers traveled, [ , ]
comprehensive
c tQ is the road segment 300

comprehensive emission rate for total vehicles, 
[ , , ]c t bf is the fraction of travel by a specific technology b,

[ ]bQ is the 301

adjusted emission rate for technology b for road segment c during time period t.302

303

3. Data Preparation304

In our experiments, we collected data from 390 fixed loop detectors buried under the Beijing highway lanes and 305

more than 20,000 GPS devices installed in taxis running on the roads of the Beijing city urban area in Dec. 2008. 306

These data were obtained from the transportation agency in Beijing and several taxi companies. The sampling 307

time intervals of loop detector data and floating car data were 120s and 40s, respectively. The average distance 308

between two adjacent loop detectors was less than one kilometer and the spatial distribution of the loop detector is 309

shown as green pin points in FIGURE 4. The city road network data is obtained from the company NavInfo, 310

China.  311
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312

FIGURE 4 Highway Network and Spatial Distribution of the 390 Loop Detectors Fixed in the Four Ring 313

Roads and Road Links within the Urban Area of Beijing City. 314

315

Object extraction and detection technology (Hinz et al, 2001) and assistant manual judgment were applied to 316

generate the statistical Vehicle Class Distributions profile in Beijing from a high resolution aerial image 317

photographed in 2008. The image represents an area located in the Haidian Distinct of about 19.4 square km 318

(3.15km*6.16km) from the inner ring road to the outer ring road (FIGURE 5). The results show that the majority 319

of the vehicles, more than 73.9%, were passenger cars. Other types of vehicles in the fleet composition include 320

taxis (19.6%), buses (4.8%), and trucks (1.7%), etc. 321

    322

FIGURE 5 Photographed Area located in Haidian District, Beijing, China (2008). 323

324

Other key statistical data about the Beijing vehicle technologies distribution (e.g., fuel type, air conditioning 325

system usage, transmission type, vehicle age, catalytic converter) and adjusted vehicle emission rates, were 326

imported from the report on Beijing Vehicle Activity Study (Liu et al, 2005) and the IVE official website 327

http://www.issrc.org/ive/. These data were used for measuring the comprehensive road segment emission rate in 328

this study.  329

0 5 10 152.5
Kilometers
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330

4. CASE STUDY331

4.1 Study Area and Time 332

The urban highway transportation system of Beijing city was chosen as our study subject. The Beijing highway 333

system within the urban area includes four ring roads (loop highways) and multiple links between ring roads. The 334

total length of the highways in our study is about 310 kilometers. Our experiment modeled the CO2 emission on 335

Dec. 9, 2008 when the Olympics and Paralympics had been closed about three months. We used the ROSE model 336

to demonstrate the daily CO2 emissions from the Beijing highway transportation in 2008 based on real-time traffic 337

data. 338

339

4.2 Experiment Results  340

According to our experiments, on Dec. 9, 2008, the total CO2 emissions emitted from vehicles that passed through 341

the Beijing highway system was approximately 7,341 tons. The detailed hourly variation of the aggregated CO2342

emissions from the highway within Beijing is shown in FIGURE 6. There are two obvious CO2 emission peaks in 343

the diurnal time and one clear trough in nocturnal time. The peak CO2 emission occurred around 9:00 and 17:00, 344

in the range of 500 tons and 550 tons per hour, respectively. These two time periods were chosen because they are 345

the rush hour for people going to work and coming back home. Between these two peaks, there is one small trough 346

around 12:00am, as it is lunch time. The hourly CO2 emission amount increased rapidly from 6:00 to 7:00, while it 347

declined quickly from 18:00 to 19:00. The lowest hourly emission rate was about 45 tons per hour which occurred 348

around 3:00am in the early morning. Obviously, between 10:00pm in the evening and 7:00am in the morning, the 349

hourly CO2 emission rate was very low and far less than 200 tons. Disaggregating total emissions according to the 350

time of day revealed that: 11.6% were at the AM peak time (7:00-9:00), 52.2% at the inter-peak time (9:00-17:00), 351

13.6% during the PM peak time (17:00-19:00), and 22.6% in the evening, night time, and the early morning 352

(19:00-7:00).  353

354

FIGURE 6 Comparison of the Results of Hourly Variation of CO2 Emissions for Beijing Highway 355

Estimated by Tsinghua University’s Approach and ROSE, Respectively. 356

357

The spatial-temporal distribution of the CO2 highway emission rate in Beijing is revealed in FIGURE 7. 358

Six representative time periods, such as rush hour, work hour, and so on, were chosen to depict the spatial 359

Emission peaks 
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distribution and variation of the CO2 emission linear density. The CO2 emission linear density is defined as the 360

weight (in kilograms) of CO2 emissions per kilometer per hour (kg/km/h). It was concluded that the CO2 densities 361

changed at different times and areas. During the night time, the CO2 emissions level of most of the roads was far 362

less than 500 kilograms per kilometer per hour while during the PM peak time, the CO2 emissions linear density of 363

many road segments reached 3500 kilograms per kilometer per hour or even more. Some road segments reached 364

as high as 5000 kilograms per kilometer per hour during rush hour. FIGURE 7 shows the spatial distribution 365

nonuniformity of CO2 emissions and depicts some inherent laws as well.  Our experiment results also demonstrate 366

that there was a trend that the hourly CO2 emission density increased from the outer ring roads to inner ring roads 367

and from north-west to south-east. 368

369

370

371

372

FIGURE 7 Representative Spatiotemporal Distribution of Road Segment CO2 Emissions Linear Density 373

(kg/km/h) for Beijing Highway Network on Dec. 9, 2008 Estimated by ROSE. 374

375

4.3 Discussion  376

As shown in FIGURE 6, the fluctuation and variation of the amount of highway CO2 emissions shows a similar 377

change pattern in the results developed by both Tsinghua University (Liu et al, 2005) and our ROSE model. 378

Compared to the results from Tsinghua University’s study, the CO2 emissions hourly fluctuation curve developed 379

by our approach is more smooth and close to reality. Our approach decreased the uncertainties, especially those 380

that happened in the evening and night, while the video-based investigation approach has difficulty getting real 381

time traffic data. Additionally, the real-time traffic data based approach is sensitive enough to reveal everyday’s 382

CO2 emissions variation while the statistical approach is relatively static.  383

(A) (B)

(C) (D)

(E) (F)

500.1 1000.0 1000.1 1500.00.0 500.0Density (kg/km/h)

Time (h) (A) 0:00 1:00 (B) 8:00 9:00 (C) 12:00 13:00 (D) 15:00 16:00 (E) 17:00 18:00 (F) 19:00 20:00

1500.1 2500.0 2500.1 3500.0 3500.1 5000.0 >5000.1
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One interesting phenomenon found is that during the peak CO2 hours, the total amount of CO2 emissions 384

in 2008 was lower than the total amount in 2004 in Beijing. It was mainly because of the local government urban 385

traffic restriction rules. In 2008, Beijing’s authority issued a novel and special traffic control rule named 386

"odd-even" traffic restrictions for reducing the daily vehicle numbers traveled in the urban area. The rule had been 387

enforced several months before the Olympic Games. This rule limited the particular number of vehicles traveling 388

on the road. Cars were only allowed to travel in the Beijing urban area on alternate days depending on whether 389

their license plate numbers ending in particular numbers. The restrictions divided vehicles into five groups. For 390

example, cars with plate number ended in "0" or "5" were not allowed to drive on road on Monday; cars with the 391

number of "1" or "6" at the end of their license plate were not allowed to travel in the urban area on Tuesday. In the 392

same way, the remaining cars with specific numbers were not allowed to drive on the corresponding workday.  393

Saturday and Sunday were free from the above restrictions. When the 2008 Beijing Olympic games ended, these 394

special restrictions continued to be enforced. As is shown in FIGURE 7, our results have shown that these traffic 395

restriction rules received great success in reducing vehicles generating GHG. There is approximately 20% daily 396

reduction of the vehicle generated CO2 emissions in the Beijing urban area. 397

398

5. CONCLUSION 399

This paper presents an approach to estimate the total, spatiotemporal distribution and variation of urban area 400

traffic CO2 emissions based on various real-time traffic data (e.g., floating car data, loop detector data). 401

Furthermore, this paper provides a framework of the ROad SEgment-based Transportation CO2 Emission Model 402

(ROSE) that integrates the road network, real-time traffic data, and the IVE model. The ROSE model was applied 403

to the highways of Beijing city on Dec. 9, 2008. The overall traffic-related CO2 emission was computed and the 404

daily variation patterns were analyzed. Current work has demonstrated that the ROSE model is a useful tool for 405

accurately estimating the traffic-related greenhouse gas emissions. An important finding is that some traffic 406

restriction rules can greatly reduce the urban transportation GHG emissions.  407

Several areas of research are recommended to expand the applicability and scope of the ROSE model. 408

First, CO2 emission model/approach for the urban area without adequate real-time traffic data need to be 409

developed. Second, real-time traffic data input standards, including the data structure and the attribute format need 410

to be built up. Third, approaches for integrating the micro-scopic transportation simulation model need to be 411

considered. To create a "low-carbon" society, further work will be focused on the traffic conditions, especially the 412

impact traffic congestion has on the traffic related GHG emissions. Correspondingly, traffic restrictions and rules 413

that influence the traffic conditions also need to be effectively assessed. 414
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