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Abstract

Budgeted learning under constraints on both
the amount of labeled information and the
availability of features at test time per-
tains to a large number of real world prob-
lems. Ideas from multi-view learning, semi-
supervised learning, and even active learning
have applicability, but a common framework
whose assumptions fit these problem spaces
is non-trivial to construct. We leverage ideas
from these fields based on graph regularizers
to construct a robust framework for learn-
ing from labeled and unlabeled samples in
multiple views that are non-independent and
include features that are inaccessible at the
time the model would need to be applied. We
describe examples of applications that fit this
scenario, and we provide experimental results
to demonstrate the effectiveness of knowledge
carryover from training-only views.

1. Introduction

As learning algorithms are applied to more complex
applications, relevant information can be found in
a wider variety of forms, and the relationships be-
tween these information sources are often quite com-
plex. The assumptions that underlie most learning
algorithms do not readily or realistically permit the
incorporation of many of the data sources that are
available, despite an implicit understanding that use-
ful information exists in these sources. When multiple
information sources are available, they are often par-
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tially redundant, highly interdependent, and contain
noise as well as other information that is irrelevant to
the problem under study. In this paper, we are fo-
cused on a framework whose assumptions match this
reality, as well as the reality that labeled information
is usually sparse. Most significantly, we are interested
in a framework that can also leverage information in
scenarios where many features that would be useful for
learning a model are not available when the resulting
model will be applied.

As with constraints on labels, there are many practi-
cal limitations on the acquisition of potentially useful
features. A key difference in the case of feature ac-
quisition is that the same constraints often don’t per-
tain to the training samples. This difference provides
an opportunity to allow features that are impractical
in an applied setting to nevertheless add value dur-
ing the model-building process. Unfortunately, there
are few machine learning frameworks built on assump-
tions that allow effective utilization of features that are
only available at training time. In this paper we formu-
late a knowledge carryover framework for the budgeted
learning scenario with constraints on features and la-
bels. The approach is based on multi-view and semi-
supervised learning methods that use graph-encoded
regularization. Our main contributions are the fol-
lowing: (1) we propose and provide justification for a
methodology for ensuring that changes in the graph
regularizer using alternate views are performed in a
manner that is target-concept specific, allowing value
to be obtained from noisy views; and (2) we demon-
strate how this general set-up can be used to effectively
improve models by leveraging features unavailable at
test time.

The rest of the paper is structured as follows. In Sec-
tion 2, we outline real-world problems to motivate the
approach and describe relevant prior work. Section
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3 describes the graph construction process and the
learning methodologies that are employed. Section 4
provides preliminary discussion regarding theoretical
motivation for the method. In Section 5, effectiveness
of the approach is demonstrated in a series of experi-
ments employing modified versions of two well-known
semi-supervised learning algorithms. Section 6 con-
cludes the paper.

2. Background and Motivation

Constraints imposed on feature acquisition come from
a variety of sources and can be found in many real-
world applications. Often these problems fit naturally
into a multi-view setting, in which feature sets can
be reasonably partitioned into disjoint cohesive sets
that are somewhat redundant. Consider satellite im-
age analysis where ground sensors are available in ar-
eas that training examples are pulled from, but not
available where the model would be applied. Apply-
ing traditional approaches results in a standard satel-
lite image analysis problem that ignores the availabil-
ity of ground-level data. Another example is a medical
study where a battery of tests is performed, and results
from all of these procedures are available for subjects
of the study (the training set). An applied diagnos-
tic that is dependent upon all of these tests would be
prohibitively expensive. Therefore, the standard ap-
proach is to independently consider the separate tests
to find one procedure that seems to be the best diag-
nostic, while inter-related, useful information from the
rest of the study typically remains unused. We formu-
late a framework that allows such training-only obser-
vations to effectively improve a model that operates on
a feature set that does not include these observations.

We view this as a budgeted, multi-view learning prob-
lem. Since most applications that fit this scenario will
also have few labeled and many unlabeled examples,
we also treat the problem as semi-supervised. We as-
sume that we have l labeled examples, {(xi, yi)}li=1

and u unlabeled examples, {xi}l+u
i=l+1. In addi-

tion, we have j distinct views of each example,
xi = (x1

i , x
2
i , ..., x

j
i ). For simplicity, we will assume

y ∈ {+1,−1}, with multi-class classifiers being con-
structed of multiple one-vs-all binary classifiers. To
facilitate discussion, we will refer to a feature set avail-
able at both training and test time as a primary view,
and we will refer to a feature set available in training
only as a secondary view. For example, satellite image
features could be a primary view used for classification,
and corresponding ground-sensor features could be a
secondary view not available when the model would
be applied but that encapsulates useful information

about some or all of the training examples.

Related work on semi-supervised, multi-view regular-
ization (Sindhwani et al., 2005; Sindhwani & Rosen-
berg, 2008) employs two regularizers, but the regular-
ization using the unlabeled examples is purely unsu-
pervised. The result is that even though a tradeoff
can be made and the unlabeled regularization can be
de-emphasized, in cases where a feature set is particu-
larly noisy with regard to the target concept, it is dif-
ficult to obtain benefit from such a view, particularly
if the labeled set is small. In contrast, we demonstrate
how changes in the construction of the regularizer that
are informed by the labeled information provide ben-
efit consistently. In particular, it becomes safer to in-
clude such information, since it is unlikely to make
the regularization less effective than single-view, semi-
supervised regularization.

3. Methodology

The framework we employ is one based on semi-
supervised learning using graph-based regularization
across separate views.

3.1. The Graph Laplacian

The graph Laplacian from spectral graph theory
(Chung, 1997) is an important device in many semi-
supervised algorithms. In certain manifold-based
learning methods (Lin & Zha, 2008), the assumption
is that the data lie on a low-dimensional manifold that
cuts through the ambient space, and a graph is used to
represent that manifold. The expectation, which is not
always correct, is that the graph varies smoothly with
respect to the target problem (i.e. examples from dif-
ferent classes are rarely linked, similar examples from
the perspective of the target problem are linked, etc.).
Then, the Laplacian of the graph is used to find a space
that roughly represents that manifold. Since it works
well in practice, in our experiments, we use the unnor-
malized form of the graph Laplacian, which is defined
as follows:

L(u, v) =

⎧⎨
⎩

dv, if u = v
−1, if u and v are adjacent
0, otherwise

(1)

where d is the degree (number of incident edges) of a
vertex, and adjacency refers to a neighboring connec-
tion in the graph.

Typically, semi-supervised learning methods based on
the graph Laplacian separate the manifold discovery
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process from the learning process so that manifold dis-
covery is performed using unlabeled data only. We use
both label information and multiple views to help en-
sure that the graph is indeed smooth with respect to
the target concept being learned.

3.2. Random Subspace Multi-View Smoothing

When attempting to use secondary views in the con-
struction of a graph regularizer, one must be cognizant
of the potential for the secondary information to be
much noisier than the primary information. Therefore,
we need a method to alter the graph that attempts to
use only the concept-relevant information from the sec-
ondary views. In the general setup we are addressing,
the only information we have about the target concept
is from the labels.

In semi-supervised learning, the number of labeled
points is often very small in relation to the size of the
graph. Applying label information directly through
the use of a classifier can be problematic, since many
classes contain subclasses or clusters, such that en-
forcing links between vertices based on labels alone is
unwise. For example, creating an edge between two
very dissimilar points can create a graph that violates
the Riemannian assumptions that underpin the intu-
ition of many of these approaches. We would like to
have some sense that the end result will preserve some
semblance of geodesic distance along the true manifold
when these distances are obscured by noise in the am-
bient space. Changes based on a single classifier would
be akin to label propagation, where every error could
strongly affect the graph in a negative way.

We utilize a method based on random subspace selec-
tion (Bryll et al., 2003; Skurichina & Duin, 2001) in
order to allow the labels to influence the graph con-
struction in a robust way. The approach is simple in
that we randomly select many feature splits and use
them to train simple classifiers, each of which repre-
sents one subspace. We care very little about accu-
racy in the normal sense, because we are not looking
to make a real classification. We simply want to place
examples together in such a way as to provide some
sense of smoothness according to our target, and there-
fore, if all of the classifiers were completely accurate,
we would expect to end up ignoring any in-class clus-
ters, and thus we would still have difficulty finding a
useful graph.

We use the classifications of many classifiers from dif-
ferent subspaces to find a refined similarity that re-
flects information about our target concept in the vari-
ous views. If two examples have similar feature subsets
that are useful according to our labeled data, then we

want them to be classified together. If they both lack
good predictive features in particular subspaces, then
they will often be misclassified together, which is what
we want. Another advantage to using random sub-
spaces is that we can expect the classifiers to more ef-
fectively utilize the labeled data based on the fact that
random subspace selection reduces the dimensionality
of the feature space on which each classifier learns.

Although one must specify the number of neighbors
to retain and the number of splits to use in the graph
construction (see Algorithm 1), the method seems to
be rather robust with regard to these choices. In our
experiments we perform 100 random feature splits for
each view, resulting in two hundred subspace classi-
fiers per view trained on the labeled data. We then
construct a nearest neighbor graph based on cosine
similarity in the primary view while weighting the sim-
ilarity scores based on the percentage of shared clas-
sifications using theses random subspace models. We
then build the unnormalized graph Laplacian. Based

Algorithm 1 Graph Construction

Input: data {(xi, yi)}li=1, {xi}l+u
i=l+1 in each view,

numNeighbors k, numSplits s
for each view vj do
for index = 1 to s do
Randomly split feature set into two equal parts
Train linear classifier (SVM) on each split
Classify each sample point using the classifiers

end for
end for
Assign edge weights = (cosine similarity) × (percent
of time classified together)
Retain k nearest neighbors

on common practice from related literature, we set
the number of nearest neighbors, k, equal to 8. We
test the effect of the graph changes using two differ-
ent base algorithms that use the Laplacian matrix of
the graph. The first learning algorithm is the Lapla-
cian Eigenmap (LEM) approach described in (Belkin
& Niyogi, 2004), and the second is the Laplacian Reg-
ularized Least Squares (LapRLS) approach described
in (Belkin et al., 2006).

3.3. Transductive LEM Classifier

As described in (Belkin & Niyogi, 2004), we construct
a linear classifier in a new space that allows transduc-
tive classification. The coefficients for the new dimen-
sions are set by minimizing the sum of squared error
on the labeled data. In other words, the coefficient



Multi-View Budgeted Learning under Label and Feature Constraints

vector a is obtained using the following equation:

a = (EET )−1Ec (2)

where c is a vector representing the class labels and
the entries of E are the eigenfunctions of the Laplacian
matrix, λkvi,k; i is the index of the labeled point in the
matrix, and k is the index in the new low-dimensional
space. The mapping starts with the eigenvector asso-
ciated with the first non-zero eigenvalue, and includes
as many eigenvectors as the number of dimensions de-
sired.

3.4. LEM Out-of-Sample Extension

Because LEM is inherently transductive, it only cre-
ates a mapping for an unlabeled example if it is part
of the set used in the graph construction. For an out-
of-sample extension, we use the Nystrom Formula as
described in (Ouimet & Bengio, 2005). It employs the
Laplacian matrix as a data-dependent Kernel function
KD in the following formula in order to map a new
point into each dimension k of the new decision space:

fk(x) =

√
n

λk

n∑
i=1

vikKD(x, xi) (3)

where n is the size of the original dataset, and (λk, vk)
are the k-th eigenvalue and eigenvector.

3.5. Laplacian Regularized Least Squares

The second algorithm that we use to test the approach
is Laplacian Regularized Least Squares (LapRLS)
(Belkin et al., 2006), which uses two regularizers, in-
cluding the Laplacian matrix. Once again, we use the
same graph construction method to produce the multi-
view-derived Laplacian matrix that is used in this algo-
rithm. In this case the output function that is learned
is the following:

f(x) =

l+u∑
i=1

αiK(xi, x), (4)

where K is the (l + u) × (l + u) Gram matrix over
labeled and unlabeled points, and α is the following
learned coefficient vector:

α = (JK + γAlI +
γI l

(l + u)2
LK)−1Y, (5)

with L being the Laplacian matrix described above,
I being the (l + u) × (l + u) identity matrix, J being
the (l + u) × (l + u) diagonal matrix with the first l

diagonal entries equal to 1 and the rest of the entries
equal to 0, and Y being the (l + u) label vector, Y =
[y1, ..., yl, 0, ..., 0]. See (Belkin et al., 2006) for details.

The modifications we employ are all during the graph
construction phase. This means that we can train a
LapRLS learner using a primary view in a straightfor-
ward manner since the secondary view information is
encoded into the regularization term, γI l

(l+u)2LK, via

the matrix, L. While LapRLS avoids the need to
select the number of dimensions as in the Laplacian
Eigenmap approach, it does have its own parameters
that control the effect of the unlabeled data. For all
of our LapRLS experiments, we use the following pa-
rameters, as suggested for manifold regularization in
(Belkin et al., 2006): γAl = 0.005, γI l

(l+u)2 = 0.045.

4. Theoretical Discussion

Although a thorough theoretical analysis is beyond the
scope of this paper, we suggest how the general ap-
proach fits into existing theoretical work. The frame-
work described in this paper can be considered to rely
on a notion of compatibility, χ, as described in (Bal-
can & Blum, 2006; Balcan, 2008). The notion of com-
patibility is based on finding a model that has a low
unlabeled error rate. In the case of a graph regular-
izer, this can indicate that the function being learned
agrees with the graph and would not label two con-
nected nodes with different class labels. Of course, if
the graph incorrectly connects examples from different
classes, then the target function itself does not have an
unlabeled error rate of zero, even if some hypotheses
do. Since compatibility is defined as an expectation
over samples, in the multi-view setting the same theo-
retical arguments hold if the graph encoded notion of
compatibility is derived from alternate views in addi-
tion to unlabeled data.

In (Balcan, 2008), various sample complexity bounds
are provided. In some cases an assumption is made
that the target function’s unlabeled error rate is low
(essentially zero), and in other cases the bounds de-
pend on the unlabeled error of c∗, the true target func-
tion. For example, Theorem 2.3.2 provides a sample
complexity bound in the realizable case (c∗ ∈ C) that
depends upon the unlabeled error of the target, c∗. A
graph constructed over noisy samples is likely to have
many ”errors.” Therefore, the first assumption is too
simplistic for many real-world situations. Using unla-
beled data alone, the target function’s unlabeled error
cannot be bounded at all, since it is entirely possible
that similarity in the ambient feature space does not
reflect similarity in terms of the target concept at all.
In other words, the number of mistakes in the notion
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Table 1. High-level classifier comparison: A linear SVM is
trained on a single view consisting of just pixel features
or all features combined into a single set. The same two
sets are used for a LEM classifier, including a version that
uses random subspace smoothing based on all features as
a single set. This is compared to the method in this paper
(MV-LEM), using all features for training, but only pixel
features at test time. Transductive results are provided in
addition to the inductive results on the set-aside test set.

Features Used Avg. Error Rate
Classifier Train Test Trans Inductive

SVM Pix Pix .099 .098
SVM All All .081 .083
LEM Pix Pix .083 .068
LEM All All .085 .068

RS-LEM All All .111 .081
MV-LEM All Pix .073 .057

of compatibility itself (the graph) cannot be bound
while ignoring all information concerning the target
concept. Although labeled and unlabeled error are of
different types, it should still be possible to use su-
pervised PAC-learning bounds on generalization error
to provide a bound on the unlabeled error rate of c∗,
meaning that use of label information in the construc-
tion of the graph can bound this error with respect to
the target, allowing bounds to be applied to the overall
sample complexity.

5. Experimental Results

In order to demonstrate the effectiveness of the ap-
proach, we utilize the Multiple Features Dataset avail-
able through the UCI Machine Learning Repository
(Frank & Asuncion, 2010). The dataset is an image
recognition task over 2000 handwritten digits. It is a
10-class problem containing 200 examples of each digit.
Each example is composed of 6 distinct features sets,
which we use as 6 separate views; one primary and
five secondary. The views are the following: 240 pixel
averages in 2 × 3 windows (Pix); 216 profile correla-
tions (Fac); 76 Fourier coefficients of the digit shapes
(Fou); 64 Karhunen-Loéve features (Kar); 47 Zernike
moments (Zer); and 6 morphological features (Mor).
Additional information on the data can be found in
(Van Breukelen et al., 1998). Each of our experimental
results is the averaged error over 10 random splits of
the data into a semi-supervised training set of 100 la-
beled and 900 unlabeled examples and a separate test
set of 1000 examples for inductive testing. Table 1
shows a comparison of single view learning methods.
When the training and test features are the same, it
indicates that a single view was used; i.e. either the
pixel features (Pix) or all features combined into a sin-

Table 2. Knowledge carryover comparisons using LEM.
Classification using primary view only. Each classifier uses
the graph Laplacian for dimensionality reduction, retaining
40 eigenfunctions. Graph construction uses no smoothing
(None) , random subspace smoothing based on the primary
view only (Prime RS), or the cumulative effect of random
subspace smoothing using all of the views (Both RS).

Features Used Avg. Error Rate
Smoothing Training Test Trans Inductive

None Pix Pix .083 .068
Prime RS Pix Pix .095 .059
Both RS All Pix .064 .054

None Fac Fac .136 .124
Prime RS Fac Fac .122 .101
Both RS All Fac .072 .087

None Fou Fou .307 .301
Prime RS Fou Fou .316 .308
Both RS All Fou .063 .227

None Kar Kar .128 .114
Prime RS Kar Kar .122 .092
Both RS All Kar .065 .076

None Zer Zer .276 .256
Prime RS Zer Zer .276 .256
Both RS All Zer .064 .203

gle feature set. In the case of the Multi-View Lapla-
cian Eigenmap (MV-LEM), the views are treated sep-
arately, with pixel features being the only ones used
for inductive testing and the other views providing in-
formation through the graph construction process as
described above. It is interesting to note that the best
performance is obtained with a model that only has
access to the pixel values at test time and that the
standard Laplacian Eigenmap approach does not im-
prove with straightforward addition of the other fea-
tures. The best performance is obtained by a careful
approach that recognizes the potentially redundant in-
formation across multiple views and the hard realities
one must face when attempting to include more fea-
tures without the ability to increase the size of the
labeled data.

Table 2 and Table 3 compare the effect of different
graph construction methods using the LEM learner
and the LapRLS learner. The smoothing of the graph
takes one of the following three forms: no smoothing;
random subspace smoothing via the primary view, or
the cumulative effect of random subspace smoothing
via all views. In this case, regardless of the method
and regardless of the primary view, the addition of in-
formation from the other views during training always
provides a significant level of improvement to the clas-
sifier that operates on the primary view only. We do
not include the morphological features as a primary
view, since the 6 features are not sufficient to generate
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Table 3. Knowledge carryover comparisons using LapRLS.
Classification using primary view only. Graph construc-
tion uses random subspace smoothing based on the primary
view only (Prime RS) or the cumulative effect of random
subspace smoothing using all of the views (Both RS).

Features Used Avg. Error Rate
Smoothing Training Test Trans Inductive

Prime RS Pix Pix .185 .213
Both RS All Pix .162 .195

Prime RS Fac Fac .113 .107
Both RS All Fac .070 .078

Prime RS Fou Fou .337 .349
Both RS All Fou .318 .332

Prime RS Kar Kar .180 .181
Both RS All Kar .168 .172

Prime RS Zer Zer .331 .329
Both RS All Zer .304 .307

useful models for this 10 class problem.

6. Conclusion

We have demonstrated the use of principles from
multi-view and semi-supervised learning for budgeted
learning in the face of realistic constraints on the avail-
ability of both features and labels. Our experiments
show consistent improvement when the only difference
in training is the use of secondary views (not available
at test time) to modify the Laplacian matrix used for
regularization based on the approach outlined in this
paper. This general learning framework can also ad-
mit the insertion of expert knowledge in other forms;
e.g. via feature-based active learning.
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