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Purpose: The purpose of this study is to develop and evaluate a novel local learning-based 
approach for computer-assisted diagnosis of breast cancer.   
 
Method: Our new local learning based algorithm using the linear logistic regression method 
as its base learner can be described as follows.  

Step 1: Let G  be the sample population that consists of n  samples, i.e. 

G = {g1,g2,L ,gn}. Each sample gi  carries 11 quantifiable features, represented as f j (gi)   

( j =1,L ,11) . Given G , our algorithm first randomly selects a clustering scheme Φ(G) over 
G . In our implementation, we use the k-Nearest Neighbour (kNN) clustering algorithm to 
generate the random clustering scheme. This is done by randomly selecting the number of 
clusters, k , for the whole data set. Given k , we then randomly select k  samples as the 
initial seeds to perform our kNN clustering process. In addition, we also stochastically 
search for a pairwise sample distance metric θ(gi,gs) through randomly assigning a series 

of weight parameters ϖ = (ω1,ω 2,L ω11) such that  θ(gi,gs) = ω j ( f jj =1

11 (gi) − f j (gs)).  

Step 2: Under the clustering scheme Φ(G) , we partition the whole sample 

population into several sub-populations G1,G2,L ,Gk  such that  and 

.  For each such sub-population Gi, we then train a base learner Li, 

which in our current implementation is a linear logistic regression model. All the trained 
base learners coupled with the clustering scheme Φ(G) then form our local learning model 
for the input entire population G , denoted as MΦ(G ) .  

Step 3: We iterate between steps 1 and 2 above. For each trained model instance 
MΦ(G )  from step 2, we test its performance according to the validation part of the input data 
set for model selection purpose. Note that the testing part of the input data set will not be 
utilized throughout the whole training process. To measure the performance of a trained 
model instance, we use the prediction area under curve value (AUC) as the performance 
metric. Our algorithm also keeps track of the performance of all the model instances derived 
so far at any moment of our algorithm running time. During our stochastic clustering 
schema searching process, we also keep track of the collective performance of a certain 
clustering sampling configuration in terms of the number of sub-populations k  it divides the 
whole population into and the distance weight parameters ϖ . We measure the collective 
performance of a clustering sampling configuration using the best prediction performance of 
our local learning model MΦ(G )  derived using one of its yielded clustering scheme Φ(G). 
The higher the collective performance value is, the more likely a similarly clustering 
configuration will be sampled in the subsequent iterations. In measuring the similarity 



between two clustering configuration, we use the following metric: 

€ 

Dist(conf1,conf2) = 510 | kconf1
− kconf2

| + ||ω conf1
−ω conf 2 || , where ||.|| denotes the Euclidean 

norm. Overall, our algorithm will perform its stochastic searching process until the total 
allowed computing time is used up by our random walk process in identifying the most 
suitable population subdivision scheme and their corresponding individual base learners.  

 
The proposed local learning-based approach was applied for the prediction of breast cancer 
given 11 mammographic and clinical findings reported by physicians using the BI-RADS 
lexicon. Our database consisted of 850 patients with biopsy confirmed diagnosis (290 
malignant and 560 benign).  We also compared the performance of our method with a 
collection of publicly available state-of-the-art machine learning methods.  
 
Results: Predictive performance for all classifiers was evaluated using 10-fold cross 
validation and Receiver Operating Characteristics (ROC) analysis. Figure 1 reports the 
performance of 54 machine learning methods implemented in the machine learning toolkit 
Weka (version 3.0). These methods include: 1) Bayesian Logistic Regression, 2) Naïve 
Bayes, 3) Naïve Bayes Simple, 4) Naïve Bayes Updateable, 5) Logistic, 6) Multilayer 
Perceptron, 7) RBF Network, 8) Simple Logistic Regression, 9) Nested Dichotomies, 10) 
Filtered Classifier, 11) Grading, 12) Decision Stump, 13) LMT, 14) Simple Cart, 15) Ada 
Boost, 16) Attribute Selected Classifier, 17) Bagging, 18) Classification Via Clustering, 19) 
Classification Via Regression, 20) CV Parameter Selection,  21) Dagging, 22) J48 Tree, 23) 
Logit Boost, 24) Multi Boost AB, 25) Multi Class Classifier, 26) FT Tree, 27) NB Tree, 28) 
REP Tree, 29) Bayes Net, 30) SVM (Poly Kernel), 31) SPegasos, 32) Voted Perceptron, 33) 
IB1, 34) Linear NN Search, 35) KStar, 36) LWL (Decision Stump), 37) Multi Scheme, 38) 
Hyper Pipes, 39) VFI, 40) J48 graft, 41) Random Forest, 42) Conjunctive Rule, 43) 
Decision Table, 44) DTNB, 45) JRip, 46) NNge, 47) One R, 48) PART, 49) Ridor, 50) Zero 
R, 51)AD Tree, 52) BF Tree, 53) LAD Tree, 54) Random Tree.  
 

 
Figure 1. Performance comparison of 54 machine learning methods for our breast 
cancer prediction problem. See text.  
 
To the best of our knowledge, Weka’s implementation of cross-validation is based on 
randomly dividing the whole sample population in a way that is fixed for all methods and 
all runs. Therefore, performance measurement numbers obtained for different methods can 
be directly compared. The best prediction performance observed is 0.912 (as determined by 
Weka’s ROC implementation), which is attained by three methods independently: Simple 
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Logistic Regression, LMT, and Classification Via Regression—all highlighted in red in the 
figure. This finding is consistent with prior studies confirming the highly linear nature of the 
problem in that simple linear regression is capable of achieving top performance among all 
popular machine learning methods. Our study results further confirm that using 
sophisticated machine learning approaches such as multi-layer perceptron, Adaboost, and 
multi class classifier do not provide any further improvement. We believe that the more 
sophisticated decision boundaries supported by these advanced learning methods cannot 
effectively help improve the learning performance, but only subject the methods to higher 
overfitting risk.   
 
Figure 2 shows the corresponding performance for the proposed approach in terms of its 
AUC and the partial AUC value (pAUCTPF0.9, 1.0) for the case when our local learning 
method partitions the whole sample population into different numbers of sub-populations 
sp#=1, …, 20. Note that sp#=1 corresponds to a degenerated case where no local learning 
scheme is used and the entire sample population is learned as a whole. This setting provides 
the baseline method (i.e., simple linear regression). We used the Matlab function call of 
linear logistic regression to realize our base learner and the ROCKIT software to compute 
both AUC and pAUCTPF0.9, 1.0 values. The figure shows the results of two different ten-fold 
sample division plans, demonstrating the stability of our study conclusion independent from 
any random ten-fold sample division plan. As the figure indicates, our local learning method 
outperforms the baseline linear logistic regression method with statistical significance at the 
95% confidence level for both runs. 
 
Please note that the AUC differences of the simple logistic regression method between 
Figures 1 and 2 could be easily attributed to differences in the implementation of the 10-fold 
cross validation scheme and the software used to estimate the ROC area. The results shown 
in Figure 1 are based on the Weka software, which does not output its ten fold sample data 
split for us to employ in our own experiments. The results shown in Figure 2 are based on 
in-house software and the ROCKIT software for estimating AUCs and partial pAUCs due to 
the more accurate estimation algorithm it implements. Due to these differences, the numbers 
reported in Figures 1 and 2 can not be directly compared. However, the qualitative 
conclusions remain: simple linear logistic regression achieves the best performance among a 
wide range of sophisticated machine learning methods implemented in Weka, yet our local 
learning approach achieves a noticeable and statistically meaningful performance 
improvement, which is numerically validated through a set of comparison experiments.  
 
New or breakthrough aspect of work:  Our experimental results suggest that it is worth 
exploring local learning techniques even when tackling problems of highly linear structure. 
This conclusion complements the existing results in the machine learning field that local 
learning may work effectively in capturing complicated, non-linear relationships exhibited 
by real-world datasets. 
 
Conclusion: We introduced a novel local learning-based classifier and compared it with an 
extensive list of other classifiers for the problem of breast cancer diagnosis. Our 
experiments show that the algorithm superior prediction performance outperforming a wide 
range of other well established machine learning techniques. Our conclusion complements 
the existing understanding in the machine learning field that local learning may capture 
complicated, non-linear relationships exhibited by real-world datasets. 



 

 
(a) AUC for Run I                                            (b) AUC for Run II 

 
(c) pAUCTPF0.9, 1.0 for Run I                             (d) pAUCTPF0.9, 1.0 for Run II 

 
Runs Run I Run II 
Pbase 0.8795±0.0126 0.8801±0.0122 
Pour 0.8911±0.0119 0.8911±0.0116 

Pour-base 0.0211 0.0104 
(e) Comparison between the performance of our global base learner (Pbase), overall performance 
of our local learning method (Pour), and the P-value of our method’s performance against that of the 
global base learner (Pour-base). 
 
Figure 2. Performance analysis and comparison of our local learning method with 
respect to its base learner.  
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