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Abstract 
From a management perspective, understanding 

the information that exists on a network and how it is 
distributed provides a critical advantage. This work 
explores the use of topic modeling as an approach to 
automatically determine the classes of information that 
exist on an organization’s network, and then use the 
resultant topics as centroid vectors for the 
classification of individual documents in order to 
understand the distribution of information topics 
across the enterprise network.  The approach is tested 
using the 20 Newsgroups dataset. 
 
 
1. Introduction 
 

Current business and government enterprises rely 
heavily on electronically stored data for most aspects 
of their operations.  The controls implemented to 
manage the data are typically focused on flexibility and 
freedom for individual users of the enterprise’s 
computer systems.  Users are permitted to create, 
modify, delete, and transfer data with a high degree of 
autonomy.  While access controls are implemented at 
the host and account levels, there are no toolsets 
available that provide insight into user activities or data 
interactions within local accounts. Thus, organizations 
have very little visibility into the nature and 
distribution of their enterprise data at the user level.  In 
addition, there is a lack of technology that reliably 
automates the collection, classification, and 
presentation of data distribution information. 

From a management perspective, understanding the 
information that exists on a network and how it is 
distributed provides a critical advantage.  It provides 
knowledge of which users have access to which data, 
how similar information topics are being pursued by 
which organizational units, and allows an enterprise to 
defend its highest value computational assets more 

vigorously.  Current approaches center on identifying 
those computational assets that manage large volumes 
of data such as file shares and mail servers.  However, 
a computer’s role provides no insight into the data it 
contains. For example, does the computer of a staff 
engineer contain valuable information?  Typically, the 
answer varies with the person, their projects, and their 
role on those projects.  Unfortunately, the fluid nature 
of staff members, projects, and roles in an organization 
makes it challenging to determine the value of 
information on an employee’s computer based on these 
criteria. Given the flux of information on a given host, 
role-assignment approaches seem impractical.  We 
believe that an automated means to discover a hosts’ 
contained information is needed. 

In the context of information security, users’ 
freedoms with documents present several challenges.  
Users have the ability to change permissions, 
redistribute files, and allow access to the downloaded 
data in a manner that may be inconsistent with the 
original intent, or any established security policies.  
Furthermore, users may edit and borrow text from 
sensitive documents to create new documents that are 
still inherently sensitive, yet may no longer be subject 
to access restrictions.  While such user actions are 
more often for convenience than explicit malicious 
acts, the result is that an organization’s inventory of 
enterprise data across their networked computers is 
unreliable a best. 

This work explores the use of topic modeling as an 
approach to automatically determine the classes of 
information that exist on an organization’s network, 
and then use the resultant topics as centroid vectors for 
the classification of individual documents in order to 
understand the distribution of information topics across 
the enterprise network.  This approach addresses the 
lack of visibility into user-level data by automatically 
discovering what topics are most relevant in an 
organization and the how those topics are distributed 
across the enterprise network. 



 
2. Related Works  
 

In the work of [13], a topic-oriented approach for 
distributed retrieval is presented.  Their approach relies 
on clustering documents in a distributed environment, 
and then generating topic models for each cluster using 
unigrams.  The generated topics are then used for 
retrieval purposes.  In the work of [6], topic modeling 
with network regularization is proposed.  Their effort 
seeks to leverage the strengths of topic modeling and 
social network analysis with the goal of not only 
identifying topics, but also mapping them to a network 
and discovering topical communities. The work of [4] 
presents distributed topic map architecture.  This 
architecture enables enterprise knowledge management 
of information distributed across a network, and 
enables clients to transparently query topics in a 
network.  Finally, in the works of [2][8], distributed 
algorithms for the topic models Latent Dirichlet 
Allocation (LDA) and Hierarchical Dirichlet Process 
(HDP) are developed.  Both of these approaches 
involve the extension of LDA and HDP models to 
large parallel machines.  A general description of topic 
modeling is provided in [12]. 
 
3. Approach  
 

What the related works have not addressed is the 
volume of data required for topic modeling, which is a 
critical bottleneck for automated topic discovery and 
document classification across a network.  In a large 
enterprise, the volume of data may range from 
hundreds of terabytes to a few petabytes.  At this scale, 
a large supercomputer would be needed in order to 
perform even parallel versions of topic modeling 
algorithms, which is a resource not likely to be 
available to an enterprise class user.  Consequently, 
what is needed is a means of effectively reducing the 
volume of data for training purposes while minimizing 
the loss of accuracy in classification. 

To meet this need, the work described here 
proposes the use of maximum variation sampling to 
reduce the volume of data required for training.  
Maximum variation sampling (MVS) is a 
nonprobability-based sampling [9].  This form of 
sampling is based on purposeful selection, rather than 
random selection, and seeks to identify a particular 
sample of data that will represent the diverse data 
points in a data set.  According to [9], “This strategy 
for purposeful sampling aims at capturing and 
describing the central themes or principle outcomes 
that cut across a great deal of [data] variation.”  The 
MVS is naturally implemented as a genetic algorithm 

(MVS-GA).  This algorithm including the fitness 
function was first described in [10], and has since been 
modified and successfully applied to medical reports 
[11]. 

In a distributed, networked environment, the MVS-
GA would be applied locally to each node’s data for 
sampling.  Samples from the nodes would then be sent 
to a master node, which would then execute an LDA-
based topic modeler on the sample data collected from 
all the nodes across the network.  The generated topics 
would then be distributed to each node on the network 
for classification of the data on that node.  Results of 
the classification would then be returned to the master 
node, and could then be used for fine-tuning cyber 
defenses. 

To better understand the feasibility of this 
approach, several tests were conducted to measure both 
the reduction in training data as well as the impact of 
that reduction on the accuracy of classification. 
 
4. Tests 
 

Six tests were conducted using the 20 Newsgroups 
data consisting of 18,846 documents [1].  For each test, 
twenty topics were generated as defined by the user, 
while the sample size was varied between the tests.  
Topics were generated using MALLET [1].  The MVS 
technique is compared to random sampling and using 
all the documents in the corpus. 

The first test involved simply using the entire 
document set as a training set.  Twenty topics were 
generated, and were then used as centroid vectors to 
create twenty clusters of the entire corpus.  The overall 
entropy of the twenty clusters was then computed. 

The second, third, and fourth tests used random 
sampling of the entire corpus.  The second test used a 
sample size of 1,884 documents, which is 
approximately ten percent of the corpus size.  If 
statistical inference were to be performed, this would 
be an appropriate sample size.  The third test used a 
sample size of 150, which is slightly less than one 
percent of the corpus size.  Finally, the fourth test used 
a sample size of 40.  This was chosen for comparison 
purposes to the MVS-GA and to observe entropy 
values at extremely low sample sizes.  As with the first 
test, twenty topics were generated from these samples, 
and used as centroid vectors to create twenty clusters 
of the entire corpus. The overall entropy of the twenty 
clusters was then computed. 

The fifth and sixth tests used MVS-GA to sample 
the entire corpus.  For these tests, the entire corpus was 
randomly split into two groups of approximately equal 
size.  This was done in order to simulate data that was 
distributed across two machines.  For both tests, the 



MVS-GA was run on each group of data, and the 
samples from each group were then combined to 
provide a single overall sample.  The fourth test used a 
sample size of 150 consisting of two samples of 75 
from each group of data, while the fifth test used a 
sample size of 40 consisting of two samples of 20 from 
each group of data.  The sample size of 40 was used 
because the MVS technique tends to perform better 
and is less computationally intensive with small sample 
sizes.  In addition, for an enterprise environment of 
distributed data, smaller samples can be effectively 
used to sample individual nodes on the network.  As 
with the previous tests, twenty topics were generated 
from these samples, and used as centroid vectors to 
create twenty clusters of the entire corpus. The overall 
entropy of the twenty clusters was then computed.   

The parameters for the MVS-GA were the 
following:  population size of 500, 25 generations, 0.7 
crossover rate, 0.03 mutation rate, and tournament 
selection.  In addition, the fitness evaluation of the 
MVS-GA is a multi-threaded master / slave 
parallelization implementation to take advantage of 
multi-core processors and reduce wall clock time. 
 
5. Results  
 

Tests were performed using dual 3 GHz Quad-Core 
Intel Xeon processors.  The results of the five tests are 
shown in the tables below. Table 2 shows the average 
runtime of the sampling and training algorithms.  The 
total runtime does not include the time required for 
classifying the entire corpus based on the twenty 
centroid vectors. Table 3 shows the percent change of 
the random and MVS techniques over the baseline of 
using the entire corpus for training. 

 
Table 1.  Test results 

Test Sample 
Size Entropy 

Avg # 
words 

per 
topic 

# 
Categories 
represented 
in sample 

All 
(baseline) 18,846 0.93 19 20 

Random 
1 1,884 1.04 19 20 

Random 
2 150 1.16 16.85 20 

Random 
3 40 1.21 8.05 14 

MVS 1 150 1.11 19 20 
MVS 2 40 1.18 18.65 15 

 
 
 

Table 2.  Runtime results 

Test 
Sampling 
Runtime 

(sec) 

Training 
Runtime 

(sec) 

Total 
Runtime 

(sec) 
All 

(baseline) 0 358 358 

Random 
1 1.48 75 79.39 

Random 
2 0.8 44 44.8 

Random 
3 0.72 32 32.72 

MVS 1 137.5 45 182.5 
MVS 2 12.76 31 43.76 

 
Table 3.  Percent Change over Baseline 

Test Sample 
Size Entropy 

Avg # 
words 

per 
topic 

# 
Categories 
represented 
in sample 

Random 
1 -90.0 11.8 0 0 

Random 
2 -99.2 24.7 -11.3 0 

Random 
3 -99.8 30.1 -57.6 -30 

MVS 1 -99.2 19.4 0 0 
MVS 2 -99.8 26.9 -1.8 -25 

 
The entropy was computed according to the 

equations shown in Equation 1 and Equation 2. 
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Equation 2.  Overall entropy 
 
The entropy values shown in Table 1 were 

computed using Equation 2.  For Equation 1, Nij is the 
number of documents from class j in cluster i.  Ni is the 
number of documents in cluster i.  For Equation 2, N is 
the number of documents in the entire corpus.  A lower 
entropy value indicates better cohesion of the 
documents to the topics, and vice versa. 

 
6. Discussion 
 

As expected, there is a clear trade-off between 
entropy and reduction in the amount of data used for 



training and classification.  One encouraging aspect of 
the results is that the reduction in data is considerably 
more than the corresponding increase in entropy.  
However, there are many more variables and 
characteristics of the algorithms and data to consider 
before any conclusions can be drawn. 

First, sampling techniques, in general, often suffer 
from the lack of representative documents from the 
various classes (i.e., subpopulations or strata within the 
document corpus). For this particular data set, a 
stratified sampling technique would have performed 
better in this regard as the broad subpopulations were 
known a priori.  However, in an enterprise 
environment with distributed data where the 
classification is not known a priori, stratified sampling 
would be difficult to implement effectively.  Stratified 
sampling could be performed across the network to 
ensure adequate sampling of locations of the data, 
however, this would still not address adequate 
sampling of the content of the data.  Given that the 
classifications would not be known a priori in an 
enterprise environment, the MVS technique performs 
slightly better than the random sampling, especially at 
very low sample sizes.  Future work will explore 
hybrid sampling consisting of stratified and maximum 
variation sampling techniques to adequately and 
effectively sample both the location and content of 
data. 

Second, the sample size is intimately connected 
with the sampling technique in terms of precision and 
run-time execution.  As can be seen from the “Random 
2” and “MVS 1” tests and from the “Random 3” and 
“MVS 2” tests, the same sample size provided very 
different outcomes in entropy, representativeness, and 
runtime.  This is a clear reflection of the characteristics 
of the sampling techniques.  MVS pursues diversity in 
the sample and is computationally expensive as the 
sample size increases.  Random sampling tends to 
neglect diversity for the sake of representativeness of 
the proportion of the data, and is not computational 
intensive.  As a result of the MVS pursuing diversity in 
the sample, it inadvertently achieves better 
representativeness of the classes of the data (especially 
at very low sample sizes), which is what the topic 
modeling algorithms need to achieve better topic 
models.  Unfortunately, better diversity in the sample 
does not guarantee better representativeness of the 
classes of data.  For example, a single class of data 
may be highly diverse while the other classes are 
homogenous, and class separation is low.  In this 
example, the MVS would most likely sample 
exclusively from the highly diverse class of data.  
However, in an enterprise environment, this case is not 
likely to occur. 

Finally, the nature of the genetic algorithm plays a 
significant role in the performance of the MVS 
technique.  As discussed in [3], there are numerous 
parameters for a canonical genetic algorithm.  
Different parameter settings can dramatically alter the 
outcome.  Additional testing with different GA 
parameters is needed as well as additional work to 
explore more advanced evolutionary techniques such 
as memetic algorithms [7]. 
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