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Abstract—  The healthcare  industry  as a whole lags far behind other  industries  in terms  of knowledge  discovery  capabilities. There  
are  many  piece-wise  approaches  to analysis  of patient records.   Unfortunately,  there are few approaches  that enable a   completely   
automated   approach   that   supports   not   just search,  but  also  discovery  and  prediction  of  patient  health. The    work     
presented     here    describes     a    computational  framework   that  provides   near  complete   automation   of  the discovery   and   
trending   of   patient   characteristics.       This approach   has  been   successfully   applied   to  the  domain   of mammography,   but   
could  be  applied   to  other  domains   of radiology with minimal effort. 
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I.       INTRODUCTION 

The  transition  from  original  digital  patient  data  to  an infrastructure  for patient health knowledge discovery proves to  be  
a  challenging  process.    Different  data  formats  (e.g., images  vs. text),  variation  in the level  of structure  (e.g.,  a database  vs.  
plain  files),  or data quality  (e.g., transcription errors)   can   complicate   the   creation   of   a   useful   data repository.  In 
particular, the process of anonymizing patient data  can  inadvertently  remove  the  connections  that  keep together different 
portions of the data. 

Despite  these  challenges,  the  systematic  collection  and 
use of health-related data has been a growing trend in recent years, promoted by actors from the government  [6], private 
companies  [7],  and  the medical  and  research  communities [5].   In particular,  large  data  warehouses  are considered  a 
necessary  step  towards  patient-centric  and  evidence-based public  health.    That  is,  the  importance  of  collecting  and 
maintaining     health    related    data    goes    beyond    data management issues; it creates the opportunity for large-scale data 
analysis, e.g., [8]. 

Providers are only just beginning to recognize the value of data mining as a tool to analyze patient care and clinical 
outcomes  [35].   Other  work  is being  done  in the  medical environment   to  use  automated   software   tools  to  extract 
knowledge   from   unstructured   radiology   reports   [4][36]. Preliminary findings demonstrate that automated tools can be used     
to     validate    clinically    important    findings    and recommendations  for  subsequent  action  from  unstructured 
 

radiology  reports.   Commercially  available  software  is also being tested to automate a method for the categorization  of 
narrative text radiology reports, in this case dealing with the spine and extremities [4]. 

A   remaining   challenge   is   the   lack   of   a   complete framework   for  ingesting   raw  data  and  providing   a  full 
analysis of the  patient’s  health.    Individual  pieces  of data may be analyzed separately, however, there is a need to have an  
understanding  of  the  patient’s  characteristics  and  how they may change over time in relation to their health.   For example, 
metabolic syndrome is a group of risk factors that occur together and help identify if a patient is at higher risk for type-2  
diabetes.   These  risk factors  must be monitored over   time   and   must   be   monitored   as   a   group,   not individually.    
Another  challenge  is  the  ability  to  analyze groups  of patients,  and understand  how individual  patients differ from the group  
characteristics.    Finally,  much of the data pertaining to patients is in the form of human language. This   poses   significant   
challenges   in  that   each   area   of medicine may have its own language (i.e., a set of words and phrases  that  are  unique  to that  
domain).    To  address  this, many approaches will develop custom ontologies or parsers to capture the uniqueness of the 
language.  This can be quite a time consuming  process as well as limit the flexibility  of the approach to other domains. 

These challenges necessitate a computational  framework 
that can support  search,  discovery,  and trending  of patient characteristics   in   order   to   rapidly   transition   from   data 
collection to an understanding of a patient’s health trajectory (e.g.,  the  patient’s  health  is  good  but  is  declining,  or  the 
patient’s health is bad but is improving).  This work presents initial research into the development and application of such a 
framework as applied to the domain of mammography and the corresponding  radiology  reports.   The future goal is to 
supplement  this  work  with  additional  image  and  numeric processing  techniques  to further enhance  the computational 
framework as well as apply it to other domains. 

The following  sections will provide a brief background, and  a  description  of  the  search,  discovery,  and  trending 
capabilities of the framework. 
 

II.     BACKGROUND 

The following  sections  provide  background  information to  several  areas  that  are  key  components  of  the  proposed 
framework as well as the domain in which it is applied. 
 



A.    Mammography Data 

Mammography  is  the  procedure  of  using  low-dose  X- rays  to  examine   the  human  breast  for  the  purposes   of 
identifying   breast   cancer   or  other  abnormalities.      Each patient that undergoes a mammogram has at least one X-ray image 
and one textual report written by a radiologist.   In the report, the radiologist describes the features or structures that they see or do 
not see in the image.  Essentially, this report is meta-data  that is written  by a human  subject  matter expert about the image. 
Unfortunately, little work has been done to utilize and maximize  the knowledge  potential that exists in these reports. 

This   work   uses   unstructured   mammography   reports 
consisting  of 12,809  patients  studied  over a 5-year  period. There  are  approximately  61,000  reports  in  this  set.   Each report  
generally  consists  of two sections.   The first section describes what features the radiologist does or does not see in the image.   
The second section provides the radiologist’s formal  opinion  as  to  whether  or  not  there  are  suspicious features that may 
suggest malignancy (i.e., or the possibility that the patient has cancer).  The set of reports also includes a number of reports that 
simply state that the patient canceled their appointment. 

As discussed  in [12]  using  a subset  of this  data,  these reports  vary in length.   Some radiologists  use more words than 
others when describing the same features.  For example, in patients that do not exhibit any suspicious features, there are  some  
reports  that  very  simply  state  that  there  are  no suspicious  features.    However,  for  the  same  patient  in  a different  year,  a  
different  radiologist  will  provide  a  much more  lengthy  report  that  describes  all  of  the  suspicious features that did not 
exist. 

To  provide  a  better  perspective   of  the  challenge   of mining these reports, consider the following question.  Given a  
database  of  these  reports,  how  does  one  retrieve  those reports   that  represent   abnormalities   in  the  patient?     In 
mammography,  most patient reports will represent “normal” conditions  in  the  patient.    Consequently,  the  reports  with 
“abnormal”   conditions   are  rare  (defining   the  difference between  what  is  “normal”  and  “abnormal”  is  beyond  the scope 
of this paper).  As discussed in [12], abnormal reports tend  to  have  a richer  vocabulary  than  normal  reports.    In addition,  
normal  reports  tend  to  have  a higher  number  of “negation”  phrases.   These are phrases  that begin with the word “no” such  
as in the phrase “no findings suggestive  of malignancy.”   Performing a cluster of these reports, most of the normal reports 
would cluster together while the abnormal reports   would   not   form   a   cluster.      This   is   because “abnormal”  conditions  
tend  to  be  very  unique  and  very specific  to  a  patient  while  “normal”  conditions  are  much more  generic  and  broad  as   
shown  in  Fig.  1.     Even  if clustering provided value, clustering a very large database of these  reports  is  exceptionally  
computationally   expensive. Categorizing   would   be   faster,   however,   the   challenge 
 
remains of determining the appropriate categories, and even then, the abnormal reports may not categorize correctly. 
 

B.    Skip Grams 

To  accommodate  the  language  used  in  mammography and  to  help  adapt  the  computational  framework  to  other 
domains,  this  work  leverages  the  use  of  skip  bigrams  (s- grams).   S-grams are word pairs in their respective sentence order  
that allow for arbitrary gaps between the words [13]. A possible s-gram for the phrase “no significant radiographic features    of    
malignancy”    are    the    words    “no”    and “malignancy.”   This s-gram uniquely  identifies  a particular semantic   in  the   
language  of  mammography   reports  and enables  the identification  of all possible  variations  of such phrases.    Higher-level  
patterns  may  then  be  formed  from these s-grams.  As will be described, s-grams can be grouped together to represent normal 
and abnormal conditions. 

The use of s-grams enables the computational framework 
to sufficiently characterize  the reports such that information retrieval becomes both more accurate, simplistic, and robust to  
noise  in the language while, at the same time, not being computationally intensive. 
 

C.   Vector Space Model & Term Weighting 

In order to process the raw text of the radiology reports, each  report  is  converted  into  a  collection  of  terms  and 
associated  weights  using  the  vector  space  model  method. The vector space model (VSM) is a recognized approach to 
document  content  representation  [3] in which  the text in a document is characterized  as a collection (vector) of unique 
terms/phrases      and      their      corresponding      normalized significance. 



 
 

Figure 1    Text features from radiology reports mapped to a 2- dimensional space using multi-dimensional scaling. 
 

Developing a VSM is a multi-step process.  The first step in the VSM process  is to create a list of unique terms and 
phrases.  This involves parsing the text and analyzing  each term/phrase    individually    for    uniqueness.    The    weight 
associated  with  each  unique  term/phrase  is  the  degree  of significance that the term or phrase has, relative to the other 
terms/phrases.  For example,  if the term  “plan”  is common across all or most documents, it will have a low significance, or 
weight value.  Conversely, if “strategic” is a fairly unique term across the set of documents, it will have a higher weight value.  
The VSM for any document is the combination of the unique term/phrase and its associated weight as defined by a term 
weighting scheme. 

In  our   approach,   the  term   frequency-inverse   corpus frequency  (TF-ICF)  is used  as the term  weighting  scheme [2].   
Over the last three decades, numerous  term weighting schemes       have       been       proposed       and       compared 
[15][16][17][18][20][21].   The primary  advantage  of using TF-ICF  is  the  ability  to  process  documents  in  O(N)  time 
rather than O(N2) like many term weighting schemes, while also maintaining a high level of accuracy.   For convenience, 
the TF-ICF equation is provided here: 
 

N +1 
 

III.     SEARCH 

Faceted    search    complements    keyword    search    by incorporating    a   fixed   set   of   non-exclusive    conceptual 
dimensions  to the data, called facets [9].   Facets may have only  a  few  values  (e.g.,  brands,  price  ranges)  and  every 
document  may  have  one  or  more  values  in  some  of  the facets.     Thus,  faceted  search  provides  a  middle  ground 
between  the  full  openness  of  the  keyword  search  and  the rigidity  of  a  hierarchy.     For  example,   article  databases usually  
provide  faceted  search:  one  can  search  by  author, title, or full content. 

In order  to effectively  access  the knowledge  contained within 61,000 written reports, the Solr search platform was used,    
which   is   an   open-source    search   platform    that implements   faceted   search   [14].      It   provides   flexible mechanisms  
to  preprocess  and  index  complex  documents containing  free text, dates,  numerical  data,  and categorical at- tributes.   Solr 
supports, among others, sorting, search by fields, proximity  search, and wildcard  search.   It runs as a web server, and thus  
both indexing and searching  are done using HTTP calls.   Search results can be returned  in XML format, which facilitates 
automated analysis.   The definition of fields, their data types, whether they should be treated as facets, their lexical analysis at 
indexing and query time can 
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be defined via a XML schema. 
Solr enables this computational  framework to leverage a machine–readable   search  engine  that  can  be  tailored  as 

 
In this equation, fij represents the frequency of occurrence of a term j in document i.  The variable N represents the total 

number of documents in the static corpus of documents, and nj   represents  the  number  of  documents  in  which  term  j 
occurs  in that static corpus.   For a given frequency  fij, the weight, wij, increases  as the value of n decreases,  and vice 
versa.    Terms  with  a  very  high  weight  will  have  a  high frequency fij, and a low value of n. 

For this work, the entire corpus of approximately 61,000 
radiology  reports was used for the ICF table, however  this 
can be altered according to the application.  In the ICF table, we store N, which is the total number of documents  in the 
corpus.  Also, for each unique term j, after removing the stop words and applying  Porter’s Stemming  Algorithm  [19], we store 
nj, which is the number documents in the corpus where term j occurred one or more times.   As a result, the task of generating 
a weighted document vector for a document in a dynamic data stream is as simple as one table lookup.   The computational  
complexity   of  processing   N  documents   is therefore, O(N). 

Once   a   vector   representation    is   created   for   each 
document,  similarity  comparisons   can  be  made.     In  our approach, a cosine similarity is used to compare two vectors A 
and B, as shown in (2). 
 

Similarity = (A . B) / (||A|| ||B||)                      (2) 
 

Similarity  values ranges between 0 and 1, inclusive.   A value of 1 means that vectors A and B are identical; while a 
value of 0 means that they are not alike at all. 
 
appropriate  to  the  data.    At  a  minimum,  the  reports  can simply  be  added  to  the  search  platform.    However,  with 
minimal  effort,  additional  tailoring  can  be  performed  to enhance   the   capabilities.       This   section   describes   the 
additional metadata that was used for each report. 

The individual  report  was set as the document  unit for indexing.  Table 1 shows the data features that were mapped to  
fields,  their  source,  and  whether  they  were  treated  as facets.   A multivalued  Tag field was created to incorporate 
annotations.   These annotations  consist of: redundant report file names, i.e., reports with the same content;  whether  the report 
had a mammogram  assigned; whether the report was labeled as normal or suspicious. 
 

 
TABLE I.          FEATURES INCLUDED IN THE INDEX 

 
Finally, the multivalued  SGram field contains the list of s-grams   that   were   found   in   the   report,   and   the   field 

SGramCount  stores  how  many  of  them  were  found.    To actually determine the reports that have a particular s-gram, two-
phase  indexing  is  used.    The  first  phase  indexed  the reports without s-gram information. In the second phase, this index was 
queried with each of the available s-grams using a proximity  query.   The reports that matched  the query were then updated with 
this information.   When all s-grams were queried, a new index was created with the report information updated. 

For most of the text, Solr tokenizers and analyzers were used with the default options, i.e., create tokens by splitting on 
spaces and case changes and ignore stop words.  Because of the value of the negations, we did not treat ‘no’ and ‘not’ as stop 
words.  With the exception of the RawText field, we also   used   Porter’s   Stemming   Algorithm   [19].      More information  on  
the search and indexing  of this approach  is provided in [10]. 
 

A.    Faceted Search for Automated Analytics 

Solr’s  machine-readable  query  results  facilitate  reading and analyzing  them in an automated  fashion.   We describe two 
usage modes of this functionality, with examples. 

Feature/Field  Faceted
  

Exam Col 3 Exam entry 
Exam Col 4 Exam entry 
Exam  Exam entry 

Exam Description Exam entry 
Exam Insurance Info Exam entry 

Exam Index Exam entry 
Exam  Exam entry 

Key [Report File name]  
Mammogram Date Mammogram 

Mammogram File name Mammogram 
Patient  Report/Exam list 

 Metadata 
SGram Count Metadata 

 Metadata 
Raw   

 Exam entry + Report 



One  usage  mode  is  the  retrieval  of  large  numbers  of results as one step in a data analysis process.   For example, we  
queried  for  all  labeled  reports,  obtained  their  s-grams, computed a measure of distance among them, and projected those  
distances  to  a  2-dimensional  space.    Each  patient’s report  was  represented  in  the  vector  space  model  (VSM). The measure 
of distance was based on the cosine similarity. The   2-dimensional   projected   space   was   obtained   using multidimensional  
scaling.   Fig. 1 shows  the results  of this transformation.      Reports   labeled   as  normal   (blue  stars) appear very close (i.e.,  
similar) to each other, while reports labeled  as suspicious  (red crosses)  appear  dissimilar  to the normal ones and among 
themselves.   This is consistent with the  fact  that  most  normal  reports  tend  to  be  shorter  with many negation phrases, hence  
sharing large commonalities, while suspicious reports are longer and have a more specific vocabulary. 

Another  distinct  automated   usage  is  a  succession   of queries, the specific parameters of each being dependent on the 
preceding.   These can be seen as small-scale versions of APIs and programming utilities for certain specialized search engines,   
such   as   Entrez   [11].      For   example,   to   find mammograms  that  seemed  to  have  triggered  a subsequent biopsy,   we   
first   searched   for  exams   whose   description contains the word “Biopsy”, collected the patient identifiers and the dates, and 
searched again for reports from the same patients within one month of the biopsy reports. 
 

IV.     DISCOVERY 

Once the search platform is established, it is then used to find “interesting” patients in order to discover characteristics that  
are  both  shared  between  and unique  to patients.   The problem lies in defining what “interesting” means.  It is easy and   
possibly   tempting   to  focus   on  a  particular   known characteristic.    However,  this  can  lead  to the  oversight  of 
 
another   possibly   more   important   characteristic   that   is unknown or not obvious.   Thus, the discovery process must 
facilitate the examination of all possible characteristics. 

For    this    computational    framework,    the    maximum variation    sampling    technique    was    used    to    identify 
“interesting” patients without the need for explicitly defining what “interesting” means.  Sampling can be divided into two main   
categories:      probability-based   and   nonprobability- based.   Probability-based  sampling  is based  on probability theory  and  
the  random  selection  of  data  points  from  the dataset.       Nonprobability-based    sampling    is   based   on purposeful  
selection,  rather  than  random  selection.     The advantage  of  this  form  of  sampling  is  that  it  allows  the analyst to look at 
data that may not otherwise be visible via the random selection process.   Within nonprobability-based  sampling, there are 
several categories of sampling [1], one of which  is  maximum  variation  sampling  (MVS)  [1].    This particular  sampling  
method  seeks  to  identify  a  particular sample of data that will represent the diverse data points in a data  set.    According  to  
[1],  “This  strategy  for  purposeful sampling aims at capturing and describing the central themes or principle  outcomes  that cut  
across a great deal of [data] variation.”    In  a  large  text  corpus,  this  form  of  sampling provides  the  ability  to  quickly  
characterize   the  different topics, or “threads” of information that are available. 

When  applied   to  patient  records,   this  approach   will identify a sample of patients that are as different from each other   
as   possible.      This   enables   the   identification   of mammography specific language that is shared across patient reports as 
well as language that makes each patient unique in the sample.  In addition, it enables the discovery of language that  defines  the  
boundary  between  normal  and  abnormal circumstances. 

The maximum  variation sampling technique  is naturally 
implemented as a genetic algorithm (GA), which is a search algorithm  based  on  principles  from  natural  selection  and genetic  
reproduction  [25][23].  GAs have been successfully applied    to    a   wide    range    of    applications,    including optimization, 
scheduling, and design problems [22][24][26]. Key features that distinguish GAs from other search methods include: 

•   A population  of individuals  where  each  individual represents  a potential solution to the problem  to be solved. 
•   A fitness function  that evaluates  the utility of each individual as a solution. 
•   A  selection   function   that  selects   individuals   for reproduction based on their fitness. 
•   Idealized    genetic    operators    that   alter    selected individuals   to  create  new  individuals   for  further testing. 
These operators, e.g. crossover and mutation, attempt    to   explore    the   search    space    without completely losing 
information (partial solutions) that is already found. 

First the population is initialized, either randomly or with user-defined   individuals.   The   GA   then   iterates   thru   an 
evaluate-select-reproduce  cycle  until  either  a  user  defined stopping  condition  is satisfied  or the maximum  number  of 
allowed generations is exceeded. 
 

The  use  of  a  population   allows  the  GA  to  perform                                            N      N 

 
parallel searches into multiple regions of the solution space. Operators   such  as  crossover   allow  the  GA  to  combine 
discovered  partial  solutions  into  more  complete  solutions [25][23][27].  As a result, the GA is expected  to search for small   
building   blocks   in   parallel,   and   then   iteratively recombine  small  building  blocks  to form  larger  and larger 
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building blocks. In the process, the GA attempts to maintain a  balance  between  exploration   for  new  information   and 
exploitation  of existing  information.  Over  time,  the GA  is able to evolve populations containing more fit individuals or 
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Genetic  algorithms  perform  very  well  for  large  search spaces and are easily scalable to the size of the data set. To 
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better understand the need for scalability and the size of the search space in this problem domain, consider a set of 10,000 
radiology reports.  Now, suppose an analyst needs to reduce this data set to 200 representative  reports  (only  2% of the entire 
data set).   In that case, there are approximately  1.7 x 
10424  different combinations of reports that could be used to create  a single  sample.   Clearly,  a brute  force  approach  is 
unacceptable.   In addition, many of the combinations  would consist of duplicate data that would lower the quality of the result for 
the analysts. 

Two of the most critical components  of implementing  a 
GA  are the encoding  of the problem  domain  into  the GA population and the fitness function to be used for evaluating 
individuals  in the population.    To encode  the data for this particular problem domain, each individual in the population 
represents one sample of size N.  Each individual consists of N  genes  where  each  gene  represents  one  radiology  report (each  
report  is  given  a  unique  numeric  identifier)  in  the sample.    For  example,  if  the  sample  size  were  10,  each individual  
would represent one possible sample and consist of  10  genes   that  represent   10  different   reports.     This representation is 
shown in the following figure. 

 
 

Figure 2    GA individual representation 
 

The fitness function evaluates each individual according to  some  predefined  set  of  constraints  or  goals.     In  this particular 
application, the goal for the fitness function was to achieve a sample that represents  the maximum  variation  of the   data   set   
without   applying   clustering   techniques   or without  prior  knowledge  of the population  categories.    To measure  the  variation  
(or  diversity)  of  our  samples,  the summation of the similarity between the vector-space models of each document  (or gene)  in  
the sample  is calculated  as shown in the following equation. 
 

In (3), the Sim function  calculates  the cosine similarity between  the  vector  space  models  of  gene  j  and  k  of  the 
individual  i.   This  distance  value  ranges  between  0 and  1 with  1  indicating  that  the  two  reports  are  identical  and  0 
indicating  that they are completely  different in terms of the words  used  in  that  report.    Therefore,  in  order  to  find  a sample 
with the maximum variation (3) must be minimized (i.e., lower fitness values are better). 

The  penalty  functions  are  incorporated  into  the  fitness 
function  in order  to penalize  individuals  in the  population based on the length of the documents they represent.  Shorter 
documents  receive higher penalties while longer documents receive  much  lower  penalties.  The  penalty  functions  also return 
values that are between 0 and 1, inclusive.  As a result of the penalty functions, the cancellation reports will receive the highest  
fitness  values,  while  lengthy,  abnormal  reports will receive the lowest fitness values. 

Using this GA implementation,  samples  of patients  can then be extracted.  As samples are being evaluated during the GA  
execution,  s-grams  from all the reports  represented  by each   individual   are   identified   and   counted.      S-grams belonging  to  
individuals  that  are  selected  for  reproduction are  kept  separate  from  those  who  are  not  selected.    As  a result of the fitness 



function, individuals that are selected for reproduction tend to have reports that describe abnormalities while  those  that are not  
selected  tend  to have  reports  that describe  normal  conditions.   As the GA executes,  it learns the most frequently used s-grams 
that represent both normal and abnormal conditions.   Examples of the most frequent s- grams from failed individuals (i.e., normal 
reports) are “no & suspicious”  and  “no  &  masses.”    Examples  of  the  most frequent s-grams from successful individuals (i.e., 
abnormal reports) are “core & biopsy” and “needle & procedure.”   A list  of  the  most  frequently  used  normal  and  abnormal  s- 
grams  are  provided  in  [33].    Consequently,  this  approach enables the discovery of the mammography domain language without   
the  need  for  the  tedious   task  of  developing   a complex   ontology   as   well   as   provides   the   ability   to characterize  each  
patient’s  conditions.    This  leads  to  the ability to analyze patient conditions over time. 
 

V.     TRENDING 

After   discovering   s-grams   that   define   normal   and abnormal conditions, the next objective is to identify trends of the 
patient’s health (e.g., the patient’s health is declining and an abnormality may occur in the future).  To accomplish this objective, 
each patient’s record is analyzed to count the number of s-gram occurrences pertaining to both normal and abnormal conditions 
(as found during the discovery process) in each report of the record.   Only those patients with more than  12  reports  in  their  
record  are  used  for  this  analysis, otherwise there is insufficient data. 

The  normal  and  abnormal  s-gram  counts  from  each report  form  a  temporal  sequence  for  each  patient  record. Next,  
patients  are  analyzed  and  compared  based  on  these sequences.    Specifically,  we  want  to  find  patient  records where   an   
abnormality   s-gram   occurred   prior   to   many abnormality s-grams occur.  An example of this is shown in Fig. 3.  In this 
patient record, a single abnormality-related  s- gram occurs in May 1984 followed by many abnormality s- grams.    To  find  
patients  with  similar  patterns,  a  discrete wavelet   transform   (DWT)   of  the  temporal   sequence   of abnormal s-gram counts 
is used. 

A wavelet  transform  is a mathematical  function  that is 
used to split another function into separate scale components, thus  providing  a  multi-resolution   analysis.     The  wavelet 
transform  is analogous  to a prism that breaks natural white light   into   its   various   spectral   colors   with   each   color 
representing a different frequency.   They are widely used in time-series analysis, as well as other domains such as image 
processing.   In this particular  work,  Haar DWT  is used to identify       temporal       patterns       in       patient       records 
[28][29][30][31][32].   As patients are observed, the data are recorded  in  discrete  time  manner,  thus  making  DWT  the natural 
choice for transforming the time sequence. 

A  critical  feature  of  the  DWT  is  that  it  will  not  only identify the frequencies that constitute a temporal sequence, but  
also  the  location  in  time  in  which  those  frequencies occur.  It is this feature of the DWT that is exploited here in this work, 
as our objective is to find s-grams that occur prior to other s-grams.  In addition, a DWT provides the ability to find similar 
temporal patterns, allowing for the flexibility of matching    patterns    despite   amplitude    and   time   shifts. Previous   work   
has   shown   wavelets   to   be   effective   in performing similarity searches of time series [29].  However, the work described here  
utilizes a rule-based  approached  to finding similar temporal  patterns  using DWT that does not rely on the use of thresholds.   
This enables a wider range of temporal patterns to be found that contain the basic temporal characteristics of interest. 

As described in [34], the rule-based approach checks for 
changes   in  the  slope   of  the  waveform   across   multiple resolutions.  The rules are broad, thus allowing for variations in  
amplitude  and  time-shifts.    Using  this  approach,  many patient records with patterns similar to Fig. 3 can be found. 

Fig. 3 shows the normal and abnormal s-gram counts of a patient  record  found  by  this  approach  where  “nodular  & 
density” was a precursor s-gram.   In one of the first reports for  this  patient  record,  the  radiologist   states,  “There  is 
 

 
 

Figure 3    Example patient record 
 
prominent nodular density posteriorly and inferiorly in both breasts  on  the  mediolateral  oblique  views,  left  more  than right.”    
This  patient  is ultimately  diagnosed  with  a simple cyst.     In  that  report,   the  radiologist   states  “Ultrasound directed  to  the  
inferocentral  left  breast  6  o'clock  position demonstrates  a 1-cm round,  simple  cyst.”   The report also states that the nodular 
density was not previously seen.  It is suspected  that the radiologist  did not review  reports  in the beginning of the record. 



It  should  be  noted  that  the  precursor  s-gram  does  not 
necessarily   provide   specific   information   concerning   the abnormality that is ultimately diagnosed. In this example, the 
precursor  s-gram  is  related,  but  it  cannot  be  conclusively determined that it is, in fact, the exact same abnormality that is  
ultimately  diagnosed.    However,  what  the  precursor  s- gram  does  provide  is an early  warning  indication  that  the 
radiologist noted some feature about the patient that seemed unusual,  or was noteworthy.   The approach  described  here seeks   
to   leverage   that  information,   even  if  it  does  not ultimately relate to the final diagnosis. 

Patient  records  that  match  this  temporal  pattern  in  the Haar  DWT  are  then  selected.  For  these  selected  patient 
records,  all s-grams  were extracted  from the first report in which the abnormal s-gram count was at least 1 but less than or  
equal  to  the  normal  s-gram  count.    This  represents  a normal   report   where   some   potential   abnormality    was 
mentioned.   Next, the time elapsed was computed  between this first report  and the next report  where  the abnormal  s- gram 
count was higher than the normal s-gram count.   This second  report  represents  an  abnormality  that  was  detected and  a   
diagnostic   screening  was  requested.     Finally,  the frequency of each extracted s-gram was computed across the selected   
patient   records   along   with   the   corresponding average elapsed time.  The results of this analysis are shown in the following 
tables. 
 

TABLE II.         TOP PRECUSOR S-GRAMS 
 

 
S-gram Occurrences 

as Precursor 
Occurrences 
in Selected 

Patients 
% Occurrence 
as Precursor 

lymph & 
node 39 71 54.93 
cm & 

density 12 24 50.00 
nodular & 

density 51 104 49.04 
 

TABLE III.        AVERAGE ELAPSED TIME 
 

S-gram Average Time 
Elapsed (years) 

Std Dev 
(years) 

Skewness / 
Kurtosis

lymph & 
node 4.2 2.9 0.01 / -1.38 
cm & 

density 1.1 2.2 2.63 / 6.91 
nodular & 

density 2.9 2.9 0.68 / -0.64 
 

TABLE IV.       INCREASE IN OCCURRENCE 
 

 
S-gram 

 
% Occurrence in 

All Patients 

% 
Occurrence 
in Selected 

Patients 

 
% Increase in 
Occurrence 

lymph & 
node 25.17 57.72 129.34 
cm & 

density 5.50 19.51 254.51 
nodular & 

density 31.39 84.55 169.35 
 

The second s-gram (cm & density) provides a much more specific window than the other two with an average of just over   
one  year  with  a  very  high  positive  skewness  and kurtosis  values.    The  reason  for  this  is  that  this  s-gram represents  
phrase  patterns  that  are  very  specific  about  a particular feature that was observed in the patient.  A feature significant enough 
to be measured.   An example phrase that this s-gram  would  represent  is “2.5 cm area of asymmetric density”.  Such specificity 
by the radiologist suggests that the radiologist is very focused on this feature and is likely to be concerned     enough     to     
request     additional     diagnostic screenings.   Consequently,  the average time elapsed for this s-gram is much shorter and has 
less variability. 

As can be seen in these tables, s-grams do exist that act 
as  precursors.  In  addition,  these  precursors  also  hold  the potential of providing lead times measured in years.  This is 
potentially   very  significant,   although   additional   work  is needed to investigate this possibility. 
 

VI.     CONCLUSION & FUTURE WORK 

This  computational  framework  provides  the  ability  to rapidly transition from data collection to advance analysis of patient  
health  trajectory  as  seamlessly  and  automated  as possible.   Performing  patient data analysis  requires  a well- defined 
representation  of the data and efficient mechanisms to search, select, and retrieve portions of the dataset.   Once the patient  
data  has been  properly  organized  and the right platform to satisfy the information needs is in place (both for 
 
small    scale    uses    and    collection-wide    analytics),    the advantages  are  clear.     In  this  computational   framework, 
exploratory  analysis  can  be  directly  performed  from  the search platform (e.g., obtain age statistics via faceted search) as  



well  as  automated  information  retrieval,  filtering,  and advanced data analysis in order to discover important patient 
characteristics and trend information. 

While this framework  provides  a significant  tool to the medical  professional,  further  enhancements  can  be  made. Future  
work  will  incorporate  the use  of image  analysis  to leverage  features  found  in  the  corresponding  image.    The image  and  
text  features  can  then  be  utilized  in  a  semi- supervised  approach [37] that relies on the graph Laplacian from spectral  
graph  theory [38].   Furthermore,  future work will investigate the use of this framework in the domains of abdominal aortic 
aneurysms and mild traumatic brain injury. 
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