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Abstract— Machine learning is used in many applications, from 
machine vision to speech recognition to decision support systems, 
and it is used to test applications.  However, though much has 
been done to evaluate the performance of machine learning 
algorithms, little has been done to verify the algorithms or 
examine their failure modes. Moreover, complex learning 
frameworks often require stepping beyond black box evaluation 
to distinguish between errors based on natural limits on learning 
and errors that arise from mistakes in implementation. We 
present a conceptual architecture, failure model and taxonomy, 
and failure modes and effects analysis (FMEA) of a semi-
supervised, multi-modal learning system, and provide specific 
examples from its use in a radiological analysis assistant system. 
The goal of the research described in this paper is to provide a 
foundation from which dependability analysis of systems using 
semi-supervised, multi-modal learning can be conducted. The 
methods presented provide a first step towards that overall goal.  

Keywords-machine learning; failure modes; failure analysis; 
dependability. 

I.  INTRODUCTION 
The use of Machine Learning (ML) in real-world 

applications has steadily increased as the potential to support or 
replace human reasoning has grown. With that increased usage 
comes an increased need to ensure that learning applications 
operate according to design in both the learning phase and the 
application phase. As the problems addressed with learning 
algorithms increase in complexity, so do the algorithms 
themselves. This can be particularly problematic when it 
becomes necessary to verify and validate cutting edge 
algorithms, which are often treated as a black box. While it is 
often assumed that a black box approach is necessary, one 
cannot always ignore the intricacies of the specific algorithms 
that are employed. Some examples of this include learning that 
integrates data from multiple modalities (i.e., multi-modal 
learning) and learning from a combination of labeled and 
unlabeled data (i.e., semi-supervised learning). In the case of 
multi-modal learning each modality may offer an independent 
or interdependent view of the data. In the case of semi-
supervised learning, examples may be leveraged very 

differently in training depending on whether or not a ground 
truth label is known for that data point. 

Although ML algorithm performance evaluation measures 
such as accuracy and precision are well known, and ML’s use 
in verification of other software has been proposed, there is a 
lack of research on the verification and failure analysis of ML 
algorithms themselves. This research is aimed at providing a 
foundation for verification and failure analysis of complex 
learning frameworks, such as those incorporating semi-
supervised and multi-modal ML. By focusing on a particular, 
widely applicable framework, we present ways in which such 
software can fail, the potential effects of constituent component 
failure, and development of a fault tree for further evaluation. 

To provide a reasonable framework for addressing 
verification and failure analysis of complex learning algorithms 
in real systems, we suggest a framework in the context of an 
analytical system that combines two modalities of data, with 
very different roles, and that seeks to involve both labeled and 
unlabeled data in the learning process. This particular 
analytical approach forces joint consideration of data with very 
different interacting roles. This type of learning is broadly 
applicable to a wide range of applications that attempt to utilize 
or learn from very different sources of information and that 
have limits imposed on the availability of ground truth data. 
This includes many decision support problems in the medical 
domain, where data describing a patient consists of a variety of 
information types, such as genetic information, blood tests, 
patient narratives, imaging, and so on.  Moreover, access to 
ground truth concerning disease status is limited due to natural 
availability, cost, privacy issues, etc. Many other fields of 
application have this same “structure.” For example, in broad 
terms many problems involving automatic object identification 
could be cast in this form; e.g., multiple sensors providing 
information about an object, multiple sources of intelligence 
data about the same incident, object, or entity (friend or foe, 
imminent danger or not, etc.). 

Research was recently conducted to develop a multi-modal 
learning framework and tools for the analysis of radiology 
images and reports [1, 9]. We use this as a guide to analyzing a 
subset of multi-modal, semi-supervised learning applications. 

Research sponsored in part by the Laboratory Directed Research and 
Development Program of Oak Ridge National Laboratory (ORNL), managed 
by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. 
DE-AC05-00OR22725. 



As a broad problem definition, we consider an application 
where two separate modes of information are available 
historically, while only one of these will be available at test 
time. Furthermore, we consider the data points with known 
ground truth labels to be a small subset of the data points that 
are in fact accessible for training. In specifying a concrete 
example of this type of application, we consider a decision 
support process designed to provide a check on or assistance to 
a radiologist’s analysis of a mammogram. Thus, the first mode 
of information is an image, and it is on this form that the 
application will operate in the field. At training time however, a 
second modality of information is available in the form of a 
radiologist’s report (natural language text) that describes each 
image. Since the system attempts to independently support a 
radiologist’s assessment, this second modality will not be 
available during actual usage, while it is clearly a valuable 
piece of information in the right learning framework. 
Furthermore, due to privacy issues, difficulty of tying biopsy 
results back to early mammograms, etc., the data points known 
to be normal or cancerous are only a subset of the actual data 
available. 

The semi-supervised machine-learning framework 
integrates text and image modalities by transforming both 
modalities into feature vectors, which are produced through 
text and image analysis and processing. These vectors are used 
to find a lower dimensional space for image analysis that is 
smooth with respect to the cancer-specific image similarities 
described in the radiological reports. When a classifier 
developed via the learning framework is given a set of 
mammography images as input, it would provide an automated 
ability to confirm a diagnosis, e.g., abnormal or normal, and a 
confidence measure for that diagnosis. We will use this system 
throughout the paper to illustrate the concepts presented. 

II. MACHINE LEARNING BACKGROUND 
Machine learning [2] (ML) can be thought of as a software-

component design process that builds a decision-making 
procedure that learns to map inputs to outputs based on 
examples it is given. This approach is particularly relevant 
when the software designer does not understand the process by 
which a decision is normally made, but can give examples of 
what is usually done. A common example is a child learning to 
distinguish sports cars from non-sporty cars. There is no 
concrete rule set used to make the distinction, and the 
definition is fuzzy and non-stationary. Therefore, writing a 
step-by-step procedure for making the decision is not 
appropriate. However, a learning algorithm could be given 
examples from each class, each of which is characterized by a 
set of descriptive features or attributes (color, shape, etc.), and 
learn to make decisions regarding previously unseen examples. 
ML is a field primarily defined by the goal of creating methods 
that generalize from examples that have been given in this way. 

As a field, ML has dramatically advanced in recent years in 
ways that are encouraging more and more applications in real 
systems. Although much of the original theory and the classic 
learning algorithms are based on simplifying restrictions, real-

world needs have driven the field to address problems such as 
handling very high-dimensional attribute spaces, dealing with 
noise and redundancy, limited or expensive ground truth, 
multiple modalities capturing overlapping information, non-
stationarity, etc. Applicable verification and validation (V&V) 
techniques for ML components were already limited in the 
classic case, and many of the more advanced algorithms are 
even more difficult to handle with current software V&V 
constructs.  

To provide focus, we address a specific learning framework 
that incorporates two of these newer learning approaches - 
semi-supervised learning and multi-modal learning. Semi-
supervised learning [3] is a paradigm that learns from examples 
with ground truth labels (labeled examples) and at the same 
time incorporates information from examples with no known 
ground truth (unlabeled examples) into the learning process. 
Multi-modal learning [1, 4] attempts to incorporate information 
about a sample from different, overlapping views, such as an 
image and a textual description of it, genomic information with 
physical measurements, various sensor measurements centering 
around a single object, etc. 

This paper provides part of a dependability framework for 
semi-supervised, multi-modal learning applications, 
specifically an architectural model, a fault model, fault 
taxonomy and failure modes and effects analysis (FMEA). 
These general (non-application specific) constructs are 
provided so that they can be applied to systems using semi-
supervised and multi-modal learning. In addition, we provide 
real examples from a radiologist decision support system for 
mammographic data. 

Fig. 1 illustrates the conceptual architecture for the semi-
supervised, multi-modal learning system and its incorporation 
into an application. The system consists of components 
responsible for preprocessing and analyzing the data, and 
developing and applying the classifier. In our sample 
application, the training data consists of a set of mammograms, 
some of patients with cancer and some without, and the 
associated radiologists’ reports. In some cases we know the 
outcome (have known ground truth), though not for a majority 
of the cases. The primary and secondary modalities are 
mammography images and radiologists’ (text) reports, 
respectively. An example classification of an image is normal 
or abnormal, with a given confidence in the classification. 

The failure analysis begins at the learning system 
architecture level, evaluating each component’s functionality 
and data, and identifying the components with which it 
interacts (defined in Table 1). Similar information for the 
sample application is provided in Table 2. For example, in 
preprocessing the data, we want to isolate and retain only that 
data of interest. In the mammography example, the images are 
isolated to contain only the breast and pectoral muscle and 
unwanted text (e.g., header or footer text) is removed from the 
radiologist’s report. 



 

Figure 1.  Conceptual architecture of semi-supervised, multi-modal learning application  

TABLE I.  MODULE DEFINITIONS 

Module Function Input(s) Output(s) 
Preprocess 
[Primary | 
Secondary] 
Modality (PPM 
| PSM) 

Isolate data to 
retain only data 
of interest 

Data of 
[Primary | 
Secondary] 
Modality 

Isolated data 

Produce 
[Primary | 
Secondary] 
Modality 
Features (PMF 
| SMF) 

Develop the 
modality’s 
feature space 

Isolated data 
[Modality]  
feature 
vectors 

Discover 
Graph Kernel 
(DGK) 

Use both 
modalities’ 
features to find a 
graph kernel for 
the primary 
modality 
classification 

Feature 
vectors for 
both 
modalities; 
Links 

Graph kernel 

Develop 
Classifier (DC) 

Develop classifier 
to classify 
primary modality 

Graph kernel Classifier 

Apply 
Classifier (AC) 

Classify data of 
primary modality; 
Provide 
confidence 
indicator 

Classifier 
Classification; 
Confidence 
level 

 
 

III. FAILURE MODEL AND TAXONOMY 
For the multi-modal, semi-supervised learning system, a 

failure model is comprised of combinations of false positive or 
false negative and confidence level (high, low) in the 
classification (see table 3). For the sample application, a False 
Positive occurs when the system classifies the image as 
abnormal when it is, in fact, normal. A False Negative occurs 
when the system classifies the image as normal when it is 
actually abnormal. A Low means the calculated confidence in 
the classification is low, providing a sense of uncertainty that 
partially mitigates the inaccuracy of the classification. A High 
indicates that the calculated confidence in the classification is 
high, despite its inaccuracy.  

TABLE II.  MODULE DEFINITIONS FOR SAMPLE APPLICATION 

Module Function Input(s) Output(s) 

Preprocess 
Image 

Isolate image to 
contain only breast 
and pectoral muscle 

Mammography 
images 

Isolated 
portions of 
images 

Produce 
Image 
Features 

Develop the image 
feature space 

Isolated 
portions of 
images 

Image feature 
vectors 

Preprocess 
Text 
Reports 

Clean up the text 
report by removing 
unwanted text 

Radiologist 
text reports Isolated text 

Produce 
Text 
Features 

Develop the text 
feature space Isolated text Text feature 

vectors 

Discover 
Graph 
Kernel 

Use the images and 
text features to find 
a graph kernel for 
image classification 

Image feature 
vectors; Text 
feature vectors; 
Links 

Graph kernel 

Develop 
Classifier 

Develop classifier to 
classify image, e.g., 
as normal or 
abnormal 

Graph kernel Classifier 

Apply 
Classifier 

Classify an image; 
Provide confidence 
indicator 

Classifier 
Classification; 
Confidence 
level 

 
 

For the purpose of this study, we generalize the system 
failure mode to “Incorrect Classification or Incorrect 
Confidence”. This is necessary because, at this level of 
analysis, one cannot determine, to any significant degree, the 
specific impact of a failure mode on the Classification or on the 
Confidence measure. The failure model defined in Table 3 will 
prove more important when module- and lower-level analyses 
are conducted. 

TABLE III.  SYSTEM FAILURE MODEL 

Classification Confidence 

False Negative 
High 

Low 

False Positive 
High 

Low 



A next step in the research is to examine the system’s 
failure modes and effects. A failure mode taxonomy defines the 
breadth and depth of failure modes to be considered in the 
research. Using a combination of failure mode taxonomies 
(e.g., [5, 6]) as a basis, we tailored a taxonomy for use in this 
analysis. The tailoring includes failure mode space reduction 
by considering only those failure modes that are possible given 
requirements-based constraints and the architectural level of 
the analysis. The resulting taxonomy of failure modes is 
provided in Fig. 2. This applies to both the baseline (general) 
and the sample classification system. 

 

 

Figure 2.  Tailored failure mode taxonomy  

The taxonomy defines the failure modes as either function- 
or input/output (I/O)-related. The only functional failure mode 
considered in this analysis is the incorrect realization of the 
module’s functionality. This can result from module 
implementation errors. 

I/O failure modes refer to the inputs and outputs of a 
module. I/O.Amount refers to the number or quantity of input 
or output. For instance, in the example system, if the 
requirements state that the Preprocess Images module will 
input a set of 4 mammography images (i.e., top and side views 
of left and right breasts) and only one image is received, then 
this failure mode is referred to as I/O.Amount.Too_Little. An 
I/O.Value.Incorrect failure mode covers those cases when the 
input to or output from a module is incorrect. An 
I/O.Range.Out_of_Range failure mode occurs when the I/O 
value is outside its requirements-specified bounds/limits. An 
I/O.Type.Mismatch failure mode includes cases when the 
expected I/O type and the actual I/O type do not match. The 
taxonomy is used in defining the failure modes as illustrated in 
sections 4 and 5. 

IV. FUNCTIONAL FMEA 
The process of conducting software FMEA helps identify 

structural weaknesses in the design and identify missing or 
incorrect requirements. The primary purpose of FMEA is to 
identify possible failure modes of the system components and 
evaluate their impact on the system performance. 

Software FMEA is conducted here on two levels – the 
system-level or functional FMEA (this section) and the more 
detailed level (section 5). The functional FMEA examines each 
module and for each functional failure mode, determines the 

local effect and the effect at the system level. The results of the 
functional FMEA for the multi-modal, semi-supervised 
learning system is provided in table 4. 

For the mammography application, the functional FMEA 
can be applied mainly in the form and with the content of table 
4. The Preprocess [Primary | Secondary] Modality component 
would be implemented as 2 modules, one each for text and 
image preprocessing, with the data processed being text and 
images, respectively. A similar structure is produced for the 
Produce [Primary | Secondary] Modality Features and the 
features (text or image) produced. 

Additional analysis at this level can include the detectability 
and reversibility of each failure mode’s effect, along with 
suggested fault mitigation techniques. 

TABLE IV.  FUNCTIONAL FMEA 

Module Failure 
Mode Local Effect System 

Effect 

Preprocess 
[Primary | 
Secondary] 
Modality 

Function. 
Incorrect_ 
Realization 

Data are preprocessed 
incorrectly; Data 
features missing, 
incorrect, or 
superfluous 

Incorrect 
Classification 
or Incorrect 
Confidence 

Produce 
[Primary | 
Secondary] 
Modality 
Features 

Function. 
Incorrect_ 
Realization 

Incorrect features 
extracted; features 
missing, incorrect or 
superfluous 

Incorrect 
Classification 
or Incorrect 
Confidence 

Discover 
Graph 
Kernel 

Function. 
Incorrect_ 
Realization 

Worthless or skewed 
feature space 

Incorrect 
Classification 
or Incorrect 
Confidence 

Module failure - 
crash 

System 
failure – 
crash 

Develop 
Classifier 

Function. 
Incorrect_ 
Realization 

Error in optimization 
routine that sets the 
weights; Effect - bad 
classifier 

Incorrect 
Classification 
or Incorrect 
Confidence 

Apply 
Classifier 

Function. 
Incorrect_ 
Realization 

Incorrect decision; 
Unwarranted or 
incorrect confidence 
in result 

Incorrect 
Classification 
or Incorrect 
Confidence 

 

V. DETAILED SOFTWARE FMEA 
The detailed software FMEA (SW FMEA) examines each 

module for each I/O or data failure mode and describes the 
local effect and the effect at the system level. Tables 5-9 
provide the failure modes and effects for each module in the 
learning system.  

Recall for the mammography decision support system, the 
primary modality is the image data and the secondary modality 
is text. Some of the failure modes shown in figure 2 may not be 
applicable to all modules. For example, in the system under 
study, an out of range input does not apply to the Preprocess 
Images module. In table 5, we’ve added a column to indicate 
whether the failure mode is applicable to images only (I), text 
only (T) or both images and text (B) in the mammography 



application. To conduct a detailed software FMEA on the 
sample application, one would take the following steps: 

• Develop a SW FMEA data table for Preprocess Images 
based on table 5. Using the right-most column in table 5 
we see that the rows included in the Preprocess Images 
SW FMEA are those with a B or an I in the cell. 

• Similarly, develop a SW FMEA table for Preprocess Text 
and include those rows with a B or a T in the right-most 
column of table 5. 

• Develop a SW FMEA for Produce Image Features based 
on table 6 and including those rows with a B or an I in the 
right hand column. 

• Develop a SW FMEA for Produce Text Features based on 
table 6 and including those rows with a B or a T in the 
right hand column. 

• Use table 7 for the Discover Graph Kernel SW FMEA and 
use text as the secondary modality. 

• Use tables 8 and 9 as they are presented here for the 
Develop Classifier and Apply Classifier, respectively, SW 
FMEA. 

 

TABLE V.  SW FMEA FOR PREPROCESS [PRIMARY | SECONDARY] 
MODALITY MODULE 

Failure 
Mode Local Effect System Effect Modality 

I/O.Amount. 
Too_Much 

Missing 
information 

Incorrect Classification 
or Incorrect Confidence B 

Incorrect (wrong 
or ineffective) 
pre-processing 

Incorrect Classification 
or Incorrect Confidence T 

Module failure System Failure (crash) B 

I/O.Amount. 
Too_Little 

Missing 
information 

Incorrect Classification 
or Incorrect Confidence I 

Misinterpret data Incorrect Classification 
or Incorrect Confidence T 

Module failure System Failure (crash) B 

I/O.Value. 
Incorrect_ 
Value 

Bad or missing 
input/ 
information 

Incorrect Classification 
or Incorrect Confidence I 

Misinterpret data Incorrect Classification 
or Incorrect Confidence T 

I/O.Range. 
Out_of_ 
Range 

n.a. n.a. I 

Misinterpret text Incorrect Classification 
or Incorrect Confidence T 

Module failure System Failure (crash) B 

I/O.Type. 
Data.Type_ 
Mismatch 

Missing 
information 

Incorrect Classification 
or Incorrect Confidence I 

Input ignored; 
data not 
interpreted 

Incorrect Classification 
or Incorrect Confidence T 

Module failure System Failure (crash) B 

 

 

TABLE VI.  SW FMEA FOR PRODUCE [PRIMARY | SECONDARY] 
MODALITY FEATURES MODULE 

Failure 
Mode Local Effect System Effect Modality 

I/O.Amount. 
Too_Much 

Missing 
information 

Incorrect Classification 
or Incorrect Confidence B 

Module failure System Failure (crash) B 

I/O.Amount. 
Too_Little 

Worthless feature 
set 

Incorrect Classification 
or Incorrect Confidence I 

Misinterpret data Incorrect Classification 
or Incorrect Confidence T 

Module failure System Failure (crash) B 

I/O.Value. 
Incorrect_ 
Value 

Missing 
information 

Incorrect Classification 
or Incorrect Confidence I 

Misinterpret text Incorrect Classification 
or Incorrect Confidence T 

I/O.Range. 
Out_of_ 
Range 

n.a. n.a. I 

Misinterpret text Incorrect Classification 
or Incorrect Confidence T 

I/O.Type. 
Data.Type_ 
Mismatch 

Missing or 
incorrect images 

Incorrect Classification 
or Incorrect Confidence I 

Irrelevant feature 
set 

Incorrect Classification 
or Incorrect Confidence T 

 

TABLE VII.  SW FMEA FOR DISCOVER GRAPH KERNEL MODULE 

Failure Mode Local Effect System Effect 

I/O.Amount. 
Too_Much 

Module failure System Failure (crash) 

Out of Memory Crash System Failure (crash) 
I/O.Amount. 
Too_Little Module failure System Failure (crash) 

I/O.Value. 
Incorrect_Value 

No benefit from 
secondary modality 

Incorrect Classification or 
Incorrect Confidence 

Bad graph kernel Incorrect Classification or 
Incorrect Confidence 

I/O.Range. 
Out_of_ Range 

Bad similarity score, 
bad graph kernel 

Incorrect Classification or 
Incorrect Confidence 

I/O.Type. 
Data.Type_ 
Mismatch 

Skewed similarity 
score, bad graph kernel 

Incorrect Classification or 
Incorrect Confidence 

 

TABLE VIII.  SW FMEA FOR DEVELOP CLASSIFIER MODULE 

Failure Mode Local Effect System Effect 
I/O.Amount. 
Too_Much Memory Crash System Failure (crash) 

I/O.Value. 
Incorrect_Value 

Bad model Incorrect Classification or Incorrect 
Confidence 

Bad classifier Incorrect Classification or Incorrect 
Confidence 

I/O.Range. 
Out_of_Range 

Bad classifier Incorrect Classification or Incorrect 
Confidence 

Module failure System Failure (crash) 

 

 

 

 



TABLE IX.  SW FMEA FOR APPLY CLASSIFIER MODULE 

Failure Mode Local Effect System Effect 

I/O.Amount. 
Too_Little 

Incorrect default to the 
first class 

Incorrect Classification or 
Incorrect Confidence 

Module failure System Failure (crash) 

I/O.Value. 
Incorrect_Value 

Misclassify Incorrect Classification or 
Incorrect Confidence 

Module failure System Failure (crash) 

I/O.Range. 
Out_of_Range 

0 weight in the 
classifier 

Incorrect Classification or 
Incorrect Confidence 

Module failure System Failure (crash) 

I/O.Type. 
Data.Type_ 
Mismatch 

Misclassify Incorrect Classification or 
Incorrect Confidence 

Module failure System Failure (crash) 

 

VI. SUMMARY 
In this paper, we provide insight into the black box 

typically assumed for analyzing complex learning frameworks 
by presenting a foundation for conducting failure analysis of a 
framework that incorporates multi-modal and semi-supervised 
learning. Specifically, we provide templates for a fault model, 
and FMEA for the learning framework, and describe its use in 
analyzing an implementation for a radiologist assistant system.  
In doing so, we have elucidated some of the issues associated 
with V&V of complex learning frameworks. 

VII. FUTURE WORK 
This research provides the basis for future research in 

complex learning framework dependability. In the FMEA 
discussion, we noted that several failures could be mitigated. A 
natural extension to the work presented is to provide fault 
mitigation suggestions, knowing that many of these will fall 
under the category of good design or programming practices 
for machine learning implementations. 

Some of the more promising methods for V&V in machine 
learning, such as metamorphic testing [10], are not currently 
designed to handle major aspects of newer learning algorithms. 
For example, metamorphic relations would have to take into 
account different effects based on which modality is modified 
or whether labeled or unlabeled data is altered. If relations are 
confined to labeled data of the primary modality, many 
relations (such as re-prediction) still cannot be used, but more 
importantly, major portions of the learning process would be 
completely ignored. This is a particularly fertile area for future 

research, and we will consider methods, relations, etc. that can 
handle these new complexities. 
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