Automatic Labeling of Software Requirements Clusters

Nan Niu*, Sandeep Reddivari*, Anas Mahmoud*, Tanmay Bhowmik*, and Songhua Xu'
* Department of Computer Science and Engineering, Mississippi State University, MS 39762, USA
t Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
niu@cse.msstate.edu, {srr159, amm560, tb394} @msstate.edu, xus1@ornl.gov

Abstract—Clustering is of great practical value in retrieving
reusable requirements artifacts from the ever-growing software
project repositories. Despite the development of automated
cluster labeling techniques in information retrieval, little is
understood about automatic labeling of requirements clusters.
In this paper, we review the literature on cluster labeling, and
conduct an experiment to evaluate how automated methods
perform in labeling requirements clusters. The results show
that differential labeling outperforms cluster-internal labeling,
and that hybrid method does not necessarily lead to the labels
best matching human judgment. Our work sheds light on im-
proving automated ways to support search-driven development.

Keywords-clustering; labeling; requirements; software reuse;

I. INTRODUCTION

Reuse of existing software artifacts and knowledge is
often viewed as the best approach to achieve tremendous
increases in developers’ productivity, improvements of soft-
ware quality, and reduced development cost [1, 2]. While
retrieving reusable code attracts much attention in search-
driven development (e.g., [3, 4, 5]), researchers have begun
to support software reuse by retrieving high-level artifacts
(HLAs), such as requirements [6] and design models [7]. As
a matter of fact, source code and HLAs are complementary
in that showing the similarity between the source code
being developed and related HLAs like requirements helps
developers improve the quality of source code identifiers [8].
This in turn increases the likelihood of the right artifacts
being reused in the right contexts.

In this paper, we focus on requirements retrieval, through
which the developer can work on the abstractions closer to
the software system’s initial concepts [9, 10]. As the number
of available requirements-level artifacts grows, it is often dif-
ficult to find relevant information to support pragmatic reuse
tasks [1]. One way to address the challenge is clustering [11]
— the automatic division of data into classes/clusters, i.e.,
a set of requirements that are in some way characterized by
an internal coherence and/or an external isolation.

The literature on requirements clustering is emerging.
Researchers have applied clustering to support a variety of
software engineering activities, including feature identifica-
tion [12, 13], automated tracing [14], and system modu-
larization [15]. An important task in analyzing clustering
results is to label the clusters to help summarize the data.

978-1-4673-1848-8/12/$31.00 (© 2012 IEEE

17

From pragmatically managing complexity’s point of view,
all the requirements within a cluster can be abstracted and
treated as a single unit. This makes labeling particularly
important for developers to efficiently search and understand
the artifacts to be reused.

In existing approaches, requirements clusters are la-
beled either manually (e.g., [13]) or semi-automatically
(e.g., [14]). Automatic labeling of requirements clusters is
still not well understood, despite the continuous develop-
ment and improvement of automated labeling techniques in
related fields like document and source code clustering. It
is our conjecture that taking full advantage of automated
labeling can improve the scalability and comprehensibility
of clustering-based requirements reuse. The goal of our work
is to parallel today’s search-driven development by inves-
tigating the role automated labeling plays in requirements
clustering. To that end, this paper makes two contributions:

e a review of the automated cluster-labeling methods

(Section II); and
e an experiment that tests three labeling methods over
three requirements datasets (Section III).
We summarize the paper and shed light on future research
avenues in Section IV.

II. BACKGROUND AND RELATED WORK

In labeling a cluster of documents (and similarly, a
cluster of webpages or a cluster of requirements), automatic
methods attempt to characterize the cluster items rather than
understand them. For this reason, a list of terms, instead
of concise terms, is typically generated as the cluster’s
descriptors. We distinguish two basic categories of cluster
labeling [11]: cluster-internal labeling selects labels by
relying solely on the contents of the cluster of interest,
whereas differential cluster labeling labels a cluster by
comparing the terms in one cluster with the terms occurring
in other clusters. In addition, hybrid labeling generates labels
by combining both intra-cluster and inter-cluster features.
Table I classifies the methods surveyed in this paper.

We describe the main idea of each labeling method and
provide known area(s) in which the method is applied. Our

Table I
CLASSIFICATION OF AUTOMATED LABELING METHODS

Differential
IDF | x* [ IG

Cluster-Internal
TF

Hybrid
TF-IDF | FPW [ LSI

SUITE 2012, Zurich, Switzerland



Table 1T
COMPARISON OF AUTOMATED LABELING METHODS

Domain Study Role of Labeling Methods Comparison Result
Source Code [24] Software architecture recovery | TF vs. IDF IDF generates more meaningful labels than TF.
Clustering [20] Reverse eng. & re-engineering | X2 vs. IDF x? consistently chooses more meaningful labels than IDF.
Information Retrieval [21] Searching and browsing X2 vs. FPW FPW produces more meaningful labels than x?.
& Web Search [17] Interactive browsing TF vs. TE-IDF | TF-IDF provides more meaningful labels than TF.

surveyed application areas include: information retrieval,
Web search, and source code clustering. In the following
descriptions, we use “documents” to refer to the data items
to be clustered, although strictly speaking, it is the webpages
and source code profiles [16] that are being grouped in Web
search and software clustering respectively.

Term Frequency (TF). The TF weighting scheme assigns
the weight to be equal to the number of occurrences of term
t in document d, denoted by tf; 4. In particular:

{ 1+log (tfs q) iftfyq >0
0

otherwise

€]

Wt .d =

2]

The terms with high TF values are candidate descriptors
for the cluster. The TF-based labeling has been applied in
information retrieval [17].

Inverse Document Frequency (IDF). IDF is a measure of
the general importance of the term obtained by weighting
how concentrated or spread out the term ¢ appears in the
corpus. Specifically:

idf; = log 2)

1+ dfy
where NN is the total number of documents in a collection,
and df; represents document frequency whose value is the
number of documents in which term ¢ occurs. The terms with
high IDF values can discriminate one cluster from another,
and therefore serve as candidate cluster labels. The IDF
labeling scheme has been applied in Web search [18] and
source code clustering [19, 20].

Chi-Square Selection (x?). The main idea is to use x? test
for each term at each node in a hierarchy by starting at
the root and recursively moving down the hierarchy. If one
cannot reject the hypothesis that a term is equally likely
to occur in all of the children of a given node, then the
term is assigned to the current node’s bag of words and
removed from all nodes under the current node. The y?
value is calculated as follows:

(0 -E)?
E
where O is the observed frequency of the term and E is the
expected frequency of the term. x? labeling has found its

applications in information retrieval [21].

X’ =3 3)

Information Gain (IG). This is an information-theoretic
measure that quantifies the degree of dependence of two
random variables. The IG, gain_r(w,C), of a word w in a
cluster C' is computed on the basis of entropy and mutual
information described in [13]. The detailed IG calculations

18

can be found in [11]. During differential cluster labeling,
one calculates the IG of each term in the cluster and selects
the k terms with the highest IG value. IG-based labeling has
been used in Web search [22].

TF-IDF combines formulas (1) and (2) (i.e., tf-idf; 4
tfy 4 x idfy) in assigning the weight of using term ¢
label the cluster. This scheme has been used extensively
information retrieval [17].

to
in

Frequent & Predictive Words (FPW) computes the value:

p(w|C)
p(w)

by considering two factors: 1) frequency, p(w|C); and 2)
predictiveness, p(w|C')/p(w). Predictiveness is similar to
IDF in that it distributes more weight to the words occurring
frequently in a given cluster and less weight to the words
occurring frequently in all of the clusters: p(w|C') is the term
frequency in a given cluster and p(w) is the term frequency
in a more general category or in the whole collection. FPW
has been considered in information retrieval [21].

p(w|C) x “)

Latent Semantic Indexing (LSI) was adapted by Kuhn et
al. in a novel way to label source code clusters [23]. The key
idea is to reverse the usual search process where a search
query of terms is used to find documents, and instead, one
uses the documents in a cluster as search query to find the
most similar terms. To label a cluster, one simply takes the
top-n most similar terms, where n=7 in the case studies
reported in [23].

Even though the set of surveyed labeling methods is
by no means exhaustive, it helps to reveal the growing
interest in investigating automated ways to characterize and
summarize clusters. Also note that the method’s application
areas reported here are rather representative than exhaustive.

Despite the increased research on label generation, there
has been only scattered work on comparing the effectiveness
of different labeling methods. Table II summarizes the four
comparative studies from related domains. Although the
role of automated labeling varies in these studies, some
common aspects exist. These include using the cluster labels
prepared manually by human expert(s) as the answer set,
and measuring the effectiveness of labeling methods by
qualitative comparisons, such as “meaningfulness” evaluated
subjectively by the researchers. Nevertheless, some general
conclusions that can be drawn from Table II seem to be that:
1) hybrid methods (e.g., FPW) outperform differential meth-
ods (e.g., XQ), and 2) differential methods in turn outperform



Table III

CHARACTERISTICS OF THE EXPERIMENTAL DATASETS

Input & Preprocessing Output
Data #of # of words # of non-stop # of # of req.s
-set req.s per req.  words per req. clusters  per cluster
iTrust 41 375.2 75.8 5 8.2
eTour 58 103.1 43.8 8 7.3
CM-1 235 22.3 5.2 27 8.7

internal methods (e.g., TF). Such findings make intuitive
sense since i) the whole (synthesized scheme) should work
better than the parts (individual schemes), and i) considering
how dissimilar a cluster (abstracted as a single unit) is to
other clusters (units) should result in more discriminative
(and thus more “meaningful”) labels than paying attention
only to the inner parts of the cluster.

III. EXPERIMENTAL EVALUATION

The previous section provides some understanding of
automated cluster labeling methods and their performances.
In order to advance this understanding, we carry out an
experiment to examine how automated methods perform in
labeling requirements clusters.

A. Datasets and Procedure

Three requirements datasets are used in our experiment.
iTrust' is a medical application, developed by software
engineering students at North Carolina State University
(USA), which provides patients with a means to keep up
with their medical records and to communicate with their
doctors. eTour? is an electronic touristic guide developed by
the final year students at the University of Salerno (Italy).
CM-13 contains a complete set of high-level requirements
for a NASA scientific instrument. Table III shows the
characteristics of these datasets.

The independent variable in our experiment is automated
cluster labeling. We take three values, namely TF, x2, and
FPW, to instantiate the independent variable for a couple
of reasons. First, they represent different method categories
(cf. Table I). Second, some pairwise comparisons between
them exist (cf. Table II). It is our intention to test whether
the results can be generalized to the requirements datasets.

Two controlled variables are worth discussing here: pre-
processing and the underlying algorithm used to produce
requirements clusters. As for preprocessing, we extend our
source code indexer [16] to handle requirements. Three spe-
cific steps are involved: tokenizing, filtering (i.e., removing
stop words like a and the), and stemming (i.e., reducing a
word to its inflectional root: “patients” — “patient”).

As far as the clustering algorithm is concerned, the
seminal work by Duan and Cleland-Huang [14] compared
three algorithms: agglomerative hierarchical, k-means, and
bisecting divisive, and reported that at reasonable clustering

Thttp://agile.csc.ncsu.edu/iTrust
2http://www.cs.wm.edu/semeru/tefse201 1
3http://promise.site.uottawa.ca/SERepository/datasets/cm1.desc

19

Table IV
ILLUSTRATION OF LABELS FOR AN ITRUST’S REQUIREMENTS CLUSTER

TF x2 FPW Manually
(Internal)  (Differential) (Hybrid) Prepared
patient hospit record record
repres health health patient
personal patient prescript HCP*
user record lhept authenticate
system medic personnel monitor
medic edit repres medical
health weight laboratori disable
weight report monitor health
pedomet authent agent agent
view repres identif hospital

* HCP: Health Care Professional. | lhep: Licenced HCP.

granularity of 5-6 clusters or higher, no significant difference
was observed between the requirements clusters produced by
the three algorithms. This is an important finding because
there is unlikely to be a clear winner among the many
different clustering algorithms when it comes to require-
ments clustering. For this reason, we choose single linkage,
an agglomerative clustering method, for its simplicity and
robustness [25]. The two “output” columns of Table III show
the clustering results. Note that, following [14], we also take
human usability of the clusters into consideration, so the
resulting cluster’s size is defined to be 742.

B. Results and Analysis

In our experiment, the clusters are generated once and for
all, and then only labeling differs. The dependent variable is
concerned with automatic labeling’s effectiveness. We devise
the answer set based on human expert’s manual labeling. In
our study, a researcher familiar with the datasets acts as the
expert. Although this poses a clear limitation, our focus is
on comparing the labels automatically generated by different
methods, given that all the other variables are set, including
those involved in preprocessing, the underlying clustering
algorithm, and preparing the answer set.

Table IV illustrates the labels for one of iTrust’s re-
quirements clusters. From all the candidate labels generated
automatically, we select the top-10 ranked terms, a heuris-
tic commonly used in labeling evaluations, e.g., [21, 11].
Similarly, the expert provides 10 labels for each cluster,
with which the automatic labels are compared. For our
evaluation, kappa statistic, an agreement measure of multi-
judgments [11], is adopted. Kappa statistic measures the
actual observed agreement, P(A), excluding the expected
agreement, P(FE), if agreement is due strictly to chance.
Mathematically,

_ P(A) - P(B)

1- P(E) ®

Kappa statistic returns a value in [0, 1], where k=0 shows
no agreement and x =1 suggests complete agreement. Note
that the Kappa measure is rather set-based; we are inves-
tigating measures that incorporate the label rankings for



Table V
KAPPA STATISTICS BETWEEN THE AUTOMATIC AND MANUAL LABELS

Data TF vs. Manual X2 vs. Manual FPW vs. Manual
-set K Agreement K Agreement K Agreement
iTrust | .38  fair .77  substantial .59  moderate
eTour | .57  moderate .70 substantial .73 substantial
CM-1 | .36 fair .83  almost perfect | .55 moderate

improving the evaluation. To interpret the « statistical signif-
icance in the current study, we use the following magnitude
guideline [11]: if  is in [0,0.20], [0.21,0.40], [0.41, 0.60],
[0.61,0.80], and [0.81, 1], then the agreement is slight, fair,
moderate, substantial, and almost perfect respectively. Take
the labels generated by TF and human expert in Table IV
as an example, the « value is 0.35, which indicates the
agreement level is fair between these label sets.

Table V shows the average x values by comparing the
requirements clusters’ labels in our datasets. The results
confirm that cluster-internal methods, such as TF, produce
the least satisfactory sets of labels. However, the best label
sets in our experiment result from x?2, a differential cluster
labeling method, rather than a hybrid method FPW. The find-
ing may imply that combining poor descriptors is worse than
combining nothing at all. Testing this conjecture requires
more detailed investigation.

Several factors can affect the validity of our study. As
for construct validity [26], for example, the interpretation
of label’s “meaningfulness” may vary among experts, but
considering 10 terms for each cluster in the evaluation helps
mitigate the threat. We believe the main strength of our
experimental design is its high internal validity [26], as all
the factors potentially affecting the label-agreement measure
are under our direct control. The results of our study may
not generalize to other requirements datasets — a threat to
external validity [26]. Besides, different preprocessings or
clustering algorithms can lead to different results.

IV. CONCLUSIONS

Retrieving and clustering requirements artifacts from
project repositories have become more important search-
driven development activities due to a shorter cognitive
distance involved in software reuse [9]. There currently
exists only limited understanding about how to best label the
requirements clusters in an automated manner. In this paper,
we have reviewed three categories of automated labeling
techniques and compared their performances in labeling
document, webpage, and source code clusters. We further
carried out an experiment to evaluate three labeling methods
on the requirements datasets. The results indicated that x?
produced superior labels than the TF and FPW methods.

From our initial implementation and evaluation, we feel
that automatic labeling has rich value in supporting reusable
requirements retrieval, and search-driven development in
general. In the future, we plan to study the interplay
of clustering algorithms and labeling methods, investigate
semantics-enabled retrieval techniques [27], and to exploit

20

novel and automated ways [28, 29] to improve automatic
labeling.

ACKNOWLEDGEMENT

Songhua Xu performed this research as a Eugene P. Wigner
Fellow and staff member at the Oak Ridge National Laboratory,
managed by UT-Battle, LLC, for the U.S. Department of Energy
under Contract DE-AC05-000R22725.

REFERENCES

R. Holmes and R. J. Walker, “Supporting the investigation and
planning of pragmatic reuse tasks,” in ICSE, 2007, pp. 447-457.

L. Heinemann and B. Hummel, “Recommending API methods based
on identifier contexts,” in SUITE, 2011, pp. 1-4.

S. Bhatia, S. Tuarob, P. Mitra, and C. L. Giles, “An algorithm search
engine for software developers,” in SUITE, 2011, pp. 13-16.

O. Panchenko, H. Plattner, and A. Zeier, “What do developers search
for in source code and why,” in SUITE, 2011, pp. 33-36.

E. Hill et al., “Investigating how to effectively combine static concern
location techniques,” in SUITE, 2011, pp. 37-40.

A. Mahmoud and N. Niu, “An experimental investigation of reusable
requirements retrieval,” in IRI, 2010, pp. 330-335.

B. Bislimovska et al., “Content-based search of model repositories
with graph matching techniques,” in SUITE, 2011, pp. 5-8.

M. Gethers et al., “CodeTopics: which topic am I coding now?” in
ICSE, 2011, pp. 1034-1036.

C. W. Krueger, “Software reuse,” ACM Comput. Surv., vol. 28(2), pp.
131-183, 1992.

J. L. Cybulski et al., “Reuse of early life-cycle artifacts: workproducts,
method and tools,” Annals of SE, vol. 5(1), pp. 227-251, 1998.

C. D. Manning, P. Raghavan, and H. Schtze, An Introduction to
Information Retrieval. Cambridge University Press, 2008.

K. Chen et al., “An approach to constructing feature models based
on requirements clustering,” in RE, 2005, pp. 31-40.

N. Niu and S. Easterbrook, “On-demand cluster analysis for product
line functional requirements,” in SPLC, 2008, pp. 87-96.

C. Duan and J. Cleland-Huang, “Clustering support for automated
tracing,” in ASE, 2007, pp. 244-253.

Z. Li et al., “Does requirements clustering lead to modular design?”
in REFSQ, 2009, pp. 233-239.

A. Mahmoud and N. Niu, “Source code indexing for automated
tracing,” in TEFSE, 2011, pp. 3-9.

P. Treeratpituk and J. Callan, “Automatically labeling hierarchical
clusters,” in Int’l Conf. Digital Govern. Research, 2006, pp. 167-176.
P. Tonella, F. Ricca, E. Pianta, and C. Girardi, “Using keyword
extraction for web site clustering,” in WSE, 2003, pp. 41-48.

0. Magbool and H. A. Babri, “Interpreting clustering results through
cluster labeling,” in ICET, 2005, pp. 429-434.

F. Siddique and O. Maqgbool, “Analyzing term weighting schemes for
labeling software clusters,” in CSMR, 2011, pp. 85-88.

A. Popescul and L. H. Ungar, “Automatic labeling of document
clusters,” (unpublished manuscript), 2000.

F. Geraci, M. Pellegrini, M. Maggini, and F. Sebastiani, “Cluster
generation and labeling for web snippets: a fast, accurate hierarchical
solution,” Internet Mathematics, vol. 3(4), pp. 413—443, 2007.

A. Kuhn, S. Ducasse, and T. Girba, “Semantic clustering: identifying
topics in source code,” IST, vol. 49(3), pp. 230-243, 2007.

0. Magbool and H. A. Babri, “Automated software clustering: an
insight using cluster labels,” JSS, vol. 79(11), pp. 1632-1648, 2006.
, “Hierarchical clustering for software architecture recovery,”
TSE, vol. 33(11), pp. 759-780, 2007.

R. K. Yin, Case Study Research: Design and Methods.
Publications, 2003.

A. Mahmoud and N. Niu, “Using semantics-enabled information
retrieval in requirements tracing,” in COMPSAC, 2010, pp. 246-247.
S. Haiduc et al., “On the use of automated text summarization
techniques for summarizing source code,” in WCRE, 2010, pp. 35-44.
S. Xu et al., “Keyword extraction and headline generation using novel
word features,” in AAAI 2010, pp. 1461-1466.

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
(10]
(11]
[12]
[13]
[14]
[15]
[16]
(17]
[18]
[19]
(20]
[21]

[22]

[23]

[24]

[25]
[26] Sage
[27]
[28]

[29]



