
A Semantic Relatedness Approach  

for Traceability Link Recovery 
 

Anas Mahmoud
1
 , Nan Niu

1
, and Songhua Xu

2
 

1
Dept. of Computer Science and Engineering, Mississippi State University, Mississippi State, MS 

2
Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN, USA, 37830 

 amm560@msstate.edu, niu@cse.msstate.edu, xus1@ornl.gov 

 

 
Abstract—Human analysts working with automated tracing 

tools need to directly vet candidate traceability links in order to 

determine the true traceability information. Currently, human 

intervention happens at the end of the traceability process, after 

candidate traceability links have already been generated. This 

often leads to a decline in the results’ accuracy. In this paper, we 

propose an approach, based on semantic relatedness (SR), which 

brings human judgment to an earlier stage of the tracing process 

by integrating it into the underlying retrieval mechanism. SR 

tries to mimic human mental model of relevance by considering a 

broad range of semantic relations, hence producing more 

semantically meaningful results. We evaluated our approach 

using three datasets from different application domains, and 

assessed the tracing results via six different performance 

measures concerning both result quality and browsability. The 

empirical evaluation results show that our SR approach achieves 

a significantly better performance in recovering true links than a 

standard Vector Space Model (VSM) in all datasets. Our 

approach also achieves a significantly better precision than 

Latent Semantic Indexing (LSI) in two of our datasets.  

Index Terms—information search and retrieval, automated 

tracing,  semantic relatedness, experimentation. 

I.  INTRODUCTION  

Traceability, according to IEEE, is defined as: (1) the 
degree to which a relationship can be established between two 
or more products of the development process, and (2) the 
degree to which each element in a software development 
process establishes its reason for existing [1]. This definition is 
strongly influenced by the originators of traceability in the 
requirements engineering community. In particular, Gotel and 
Finkelstein [2] defined requirements traceability as “the ability 
to describe and follow the life of a requirement, in both a 
forward and backward direction”.  

The availability of traceability information among various 
software artifacts (e.g. source code, requirements, test cases 
and design) significantly reduces the amount of time required 
by developers to comprehend the system [3]. This can be vital 
in various software engineering activities, such as  verification 
and validation (V&V) and impact analysis, where developers 
spend a considerable amount of their time building a mental 
model of the system and acquiring a holistic understanding of 
the task in hand [4].  

The automated tracing process consists of three steps: 
indexing, retrieval, and presentation. In the indexing step, input 

artifacts are converted into more compact forms that are 
compatible with their underlying information retrieval (IR) 
models. In the retrieval step, IR algorithms, such as Latent 
Semantic Indexing (LSI) and Vector Space Model (VSM) [4], 
are used to identify a set of candidate traceability links by 
matching a trace query with artifacts in the software repository. 
In the presentation step, retrieved candidate traceability links 
are presented to the human analyst for further validation. 

Although IR-based tools (e.g. ADAMS [5], RETRO [6]) 
help automate traceability link generation to a large extent, 
they are still shy from attaining optimal accuracy. Direct 
human judgment of candidate traceability links is still required 
in order to produce the final traceability matrix (TM) [7]. The 
underlying assumption is that, the humans’ inherent capability 
of judging relatedness of concepts gives them an upper hand 
over automated methods. Human analysts employ their prior 
knowledge of application domain and natural language skills to 
overcome the vocabulary mismatch and concept assignment 
problems associated with software artifacts [8], and leverage 
more semantic relations to support their decisions when vetting 
candidate TM.  

In practical settings, human intervention comes at the end 
of the traceability process (after-the-fact), after candidate 
traceability links have already been retrieved and ranked [9]. 
This process imposes a great challenge on the analysts’ 
performance, as their decisions can be influenced by the 
candidate TM generated by an IR-based tool [10]. In fact, 
studies of assisted requirements tracing - in which human 
analysts work with the automated tracing tool to verify 
traceability links  - suggest that human analysts working with 
such tools usually reduce the accuracy of the generated results 
[9]. In an attempt to conquer this challenge, in this paper, we 
bring human judgment into an earlier phase of the automated 
tracing process, by integrating it into the underlying retrieval 
mechanism. To achieve the goal, we use semantic relatedness 
(SR), a retrieval technique that can, to a large extent, imitate 
the human mental model of relevance. 

Researchers have successfully applied SR to several natural 
language processing (NLP) applications such as automated 
spelling correction [11], text retrieval [12], word sense 
disambiguation [13], question answering [14], and automatic 
speech recognition [15]. The success of SR in these related 
domains has motivated this work to utilize it as the core 
measure for establishing the semantic relevance between 
software artifacts, i.e. traceability recovery. The main research 

978-1-4673-1216-5/12/$31.00 c© 2012 IEEE ICPC 2012, Passau, Germany183



question is: By integrating human judgment into the retrieval 
process, through the use of SR, can we improve the overall 
performance of automated tracing tools?  

To answer our research question, we first describe a set of 
requirements for integrating SR into the automated tracing 
process, and then conduct an experimental evaluation to 
validate our claims. We implemented and executed our 
approach on three datasets from different application domains 
and assessed the results using six different performance 
measures for evaluating various aspects of automated tracing 
tools.  The evaluation produced encouraging results on the 
benefit of integrating SR for traceability link recovery. The rest 
of the paper is organized as follows. Section II provides 
background information about the traceability problem and 
semantic relatedness. Section III describes our experimental 
approach and the implementation process. Section IV presents 
analysis results. Section V describes the threats to validity. 
Section VI discusses the implications, and finally, Section VII 
concludes the paper and suggests potential research directions. 

II. BACKGROUND AND RELATED WORK 

A. Automated  Tracing  

The automated tracing problem can be defined as the ability 
to establish traceability links between various artifacts in a 
software system automatically, with no operator intervention, 
at the rates of 100% accuracy (precision) and 100% coverage 
(recall). While several solutions for this problem have been 
proposed in the literature, IR-based methods seem to be 
superior [4, 5]. IR methods aim to match a query of keywords 
with a set of objects in the software repository, and rank the 
retrieved objects based on how relevant they are to the query 
using a predefined similarity measure. IR methods heavily 
investigated in the automated tracing literature include: Vector 
Space Model (VSM) [4], Latent Semantic Indexing (LSI) [16], 
and Probabilistic Network Model [17, 18].  

Extensive empirical studies have been conducted to 
evaluate the effectiveness of different IR-based automated 
tracing techniques. Converging evidence indicates that all the 
exploited methods so far are almost equivalent in their 
capability to capture almost the same information [19, 20]. In 
most cases, a recall of 90 - 100% is achieved at precision 
between 5-30% [20]. In general, IR-based traceability tools still 
suffer on the precision side. Such tools cannot give a high 
recall without also recovering too many false positives, leading 
to higher classification efforts when analysts manually verify 
candidate TMs. Classification in this context refers to 
identifying correct links and discarding false positives [21].  

Motivated by these findings, recent traceability research has 
started focusing on other factors that can impact the overall 
performance. In general, current research trends in automated 
tracing can be categorized into three main categories: new 
retrieval methods, performance enhancement techniques, and 
the analysis of human’s role in the tracing process.   

For the first category, researchers investigated 
unconventional methodologies for traceability links recovery. 
For example, Sulattnov and Hayes [22] applied Swarm 
Intelligence, an artificial intelligence technique, to trace textual 
requirements artifacts. The approach was evaluated using two 
datasets. Results showed that the swarm intelligence based 

methods slightly outperformed the classical VSM  based 
method in terms of precision and recall, but achieved 
statistically significant results in terms of DiffAR - a 
measurement related to results contrast (cf. Section III). 
McMillan et al. [23] proposed a technique for recovering 
traceability links by combining textual and structural 
information of software artifacts. The technique is based on the 
assumption that related requirements share related source code 
elements. Preliminary results showed some performance 
improvement compared to stand-alone text-matching methods. 
Gibiec et al. [24] used a web-based query expansion algorithm 
to trace stubborn requirements. The proposed approach was 
evaluated using a dataset from the healthcare domain. The 
results showed a significant performance improvement in a 
portion of these hard-to-trace requirements. Other examples 
can be found in [25, 26, 27]. In general, while these new 
techniques help improve some aspects of the process, none of 
them provided a universally superior solution to the problem, 
as most of the studies showed inconsistent performance across 
different datasets.  

For the second category of research, researchers try to 
utilize other factors, beyond the underlying retrieval 
mechanism, for improving accuracy of tracing tools. For 
example, De Lucia proposed an incremental approach, based 
on user feedback analysis, to improve the retrieval 
performances by incorporating feedback from user 
classification decisions with the underlying retrieval 
mechanism [21]. Cleland-Huang et al. [28] introduced three 
performance enhancement strategies for incorporating 
supporting information into a probabilistic retrieval algorithm. 
The strategies include hierarchical modeling, logical clustering 
of artifacts, and semi-automated pruning of the probabilistic 
network. Capobianco et al. [29] proposed an approach that 
considers the nouns contained in an artifact content to derive 
the semantics of an artifact. Other examples can be found in 
[30, 31, 32]. Again, in all of these studies, mixed results were 
reported over various datasets, confirming De Lucia's 
speculation that “there is an upper bound to the precision that 
can be achieved by an IR-based traceability recovery tool on a 
given software system” [21].  

Prompted by these findings, researches have started looking 
at the problem from a different perspective – the human 
analysts. These studies are aimed at understanding the way 
human analysts interact with the candidate traceability links in 
a generated TM, and the process they follow to make 
classification decisions. The research group led by Hayes and 
Dekhtyar reported a series of studies of analysts performing 
tracing tasks [7, 9, 10].  These studies revealed several 
interesting observations about human's tracing behavior, 
including: a) analysts usually fail to recover the true TM b) in 
general, all analysts, regardless of their tracing experience, 
classification effort and comfort level with tracing, tend to 
converge their final TM's toward a hot spot in the recall-
precision space, and c) the initial TM accuracy is the most 
important factor impacting final TM accuracy [9].    

The above brief review of current trends in automated 
tracing research shows that, on the one hand, the success of 
requirements tracing, as measured by the final TM, hinges 
largely on how analysts subjectively evaluate the candidate 
traceability links provided by IR methods, and on the other 
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hand, the performance of human analysts is influenced by the 
quality of the initial candidate TM generated by the tool. In an 
attempt to break this loop, we introduce a new approach that 
combines both IR methods and human judgment into one step 
through the use of SR.  Next is a brief description of SR, its 
measurements and applications. 

B. Semantic Relatedness (SR) 

SR tries to quantify the degree to which two concepts 
semantically relate to each other by exploiting different types 
of semantic links connecting them. The main intent is to mimic 
human mental model when computing the relatedness of 
words. Human brain establishes the semantic relatedness 
between words based on the internal structures of their 
meaning, or the implied meanings of words [33]. For example, 
both words <cow, horse> imply a mammal that has four legs, 
hence, they can be considered related. Also, the words <horse, 
car> both refer to a transportation means for humans, from 
which perspective they can be considered related. Another 
aspect the brain examines is the frequent association between 
words. Words that often appear together are likely to be 
related. For example, the words <table, chair> appear together 
frequently, giving the human brain an indication of relatedness.   

It is also important to mention that the degree to which a 
human relates words depends on his/her previous experience 
and accumulated knowledge about these words under different 
contexts. Therefore, different people might perceive different 
judgment regarding word relatedness. For example, a person 
who has never seen or used a computer before will consider the 
word pair <mouse, keyboard> unrelated. In an attempt to 
replicate this process computationally, SR measures observe 
word usages by utilizing common sense knowledge.  

A wide range of methods for measuring SR  are discussed 
in the literature. These measures mainly estimate word 
semantic relatedness by exploiting massive amounts of lexical 
knowledge, and using statistical techniques to leverage all 
possible relations that contribute to the similarity of concepts. 
Such knowledge is usually available in external sources 
including, Linguistic Knowledge Bases (LKB) such as 
WordNet [34], collaborative knowledge bases (CKB) such as 
Wikipedia [35], or general web search results [36] such as 
Google search. These data sources are described as follows.  

 
Linguistic Knowledge Bases (LKB): created by highly 

trained linguists following clearly defined guidelines, where 
semantic links among concepts are manually assigned. 
Dictionaries are good examples of LKBs where their content is 
typically of high quality. However, LKBs have limited 
coverage as their size and content are limited. They also 
usually lack domain-specific vocabulary and can quickly be 
out-dated due to high maintenance costs [37]. 

Most of the LKB-based SR measures in the literature utilize 
WordNet as their main source of knowledge [38]. WordNet, 
introduced and maintained by Cognitive Science Laboratory of 
Princeton University, is a large lexical database of English 
verbs, nouns, and adjectives grouped into sets of cognitive 
synonyms called synsets [34].  WordNet-based techniques 
view WordNet as a graph and identify relatedness as the path 
length between concepts; the shorter the path the more similar 
the concepts [38]. Thorough investigation of such techniques 

revealed that they achieve a 35% correlation with human 
judgments [11].  

 
Web-based: SR Measures that rely on web search results 

treat the whole web as a corpus by utilizing general purpose 
search engines such as Google [39]. While this source of 
knowledge might be the most comprehensive, the web search 
results typically do not exhibit any clear structure. In addition 
to the high noise-to-signal ratio typical of web search results, 
different websites have different structures, making knowledge 
extraction a complicated process with even more 
computational overhead. Also, there is a practicality concern 
resulting from initiating multiple Web search requests or long 
search queries.  

Several web-based SR measures have been proposed in the 
literature. These measures, in general, generate confidence 
scores based on word co-occurrence using counts collected 
over very large corpora or lexical patterns extracted from text 
snippets returned by search engines. Performance studies of 
different state-of-the-art Web-based SR measures show that 
they achieve an average of 50% correlation with human 
judgment [40]; some other studies reported higher correlation 
levels up to 88% [41]. Example of SR measures that use Web 
search results can be found in [39, 40]. 

 

 Collaborative Knowledge Bases (CKB): usually available 
on the Web, are maintained by volunteer communities from 
diverse domains and expertise. They contain massive amounts 
of knowledge including domain-specific terms found in LKBs. 
CKBs are usually built following a well-defined structure with 
better concentrated knowledge that eliminates a high 
percentage of noise usually returned by search engines. In 
CBKs, semantic links are leveraged implicitly rather being 
explicitly defined such as in LKBs.  

Most well-known CKB-based SR measures utilize 
Wikipedia as their source of knowledge [35]. In 2001, 
Wikipedia was released to the public as a free, massive and 
constantly evolving source of knowledge expressed in natural 
language, opening a new horizon for enhancing NLP research 
[37]. Since then, Wikipedia has been exploited in various 
semantic relatedness measures [35, 42, 43]. These measures 
generally estimate word semantic relatedness by representing 
documents as vectors in the Wikipedia article space. CKB-
based measures have been reported to be able to achieve a 
correlation rate of up to 75% with human judgment [42, 44].  

Finally, in SR, it is important to differentiate measurements 
of similarity and relatedness between two concepts. Similarity 
is usually defined by considering the lexical relations of 
synonymy, or equivalent words (e.g. <sick, ill>) and 
hyponymy, or the type-of relation (e.g. <ambulance, vehicle>). 
Relatedness, on the other hand, extends the definition of 
similarity by examining all types of semantic relations that 
connect two concepts. Such relations include, in addition to the 
aforementioned two similarity relations, antonym, which is the 
opposite meaning (e.g. <male, female>), meronymy, or the 
part-of relations (e.g. <room, hotel>), functional relations of 
frequent association (e.g. <patient, hospital>) and other non-
classical relations. In other words, similarity can be viewed as a 
special case of relatedness [11]. 
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III. APPROACH AND IMPLEMENTATION 

In this section we describe requirements for integrating 
human judgment in the automated tracing process. We start by 
proposing an experimental framework to assess the potential 
effect of SR on traceability link recovery. Figure 1 depicts our 
experimental framework, which also describes the way the 
problem is formulated. The framework shows the suggested 
enhancement over the conventional traceability process, where 
human judgment is integrated into the underlying retrieval  
mechanism. This approach is not to be confused with the 
approach presented in [21] which uses feedback from actual 
experts. Instead, as mentioned earlier, human judgment in our 
approach is integrated through the use of SR.  

 

 
Fig. 1.  Integrating SR into the tracing process. 

This design entails several research questions, related to 
experimental settings, that need to be addressed prior to 
running the experiment. These questions include, what specific 
SR technique to exploit, what other IR methods should be used 
to compare with SR performance, what aspects of the 
performance to evaluate and the datasets to use. Next is a 
description of each of these  design decisions. 

A. Semantic Relatedness Measures 

In this paper we use a Wikipedia-based semantic 
relatedness measure, namely Explicit Semantic Analysis 
(ESA), as our basic SR retrieval mechanism that simulates 
human judgment [44]. We adopt the ESA method due to two 
reasons: the nature of the task in hand (traceability) and the 
attributes of the different SR measures. In particular, we tease 
out the following requirements for our SR selection:   

1) Correlation with Human Judgment: To integrate human 

common sense in the underlying retrieval mechanism, the 

selected SR measure should achieve high correlation with 

human judgment. An experimental comparison of equivalent 

semantic relatedness measures, using different knowledge 

sources, showed that Wikipedia-based measures significantly 

outperform WordNet in the same SR task, achieving a 

correlation coefficient of 0.75 with human judgments, higher 

than Google search result and WordNet based measures [35].  

2) Text Comparison: The nature of traceability tasks 

requires comparing text fragments (profiles) to generate the 

candidate traceability links. WordNet-based methods and web-

based methods are inherently limited to individual words 

matching. Getting these measures to compare longer text 

requires an extra level of sophistication [43]. However, ESA is 

a text matching technique, where fragments of text of arbitrary 

length can be compared in a similar way to single word 

comparison.  

3) Performance: As mentioned earlier, LKBs are usually 

limited in coverage. While Web-search might be 

comprehensive, it usually includes a high noise-to-signal ratio. 

However, CKBs such as Wikipedia, which contains massive 

amounts of manually organized domain specific knowledge, 

achieve a balance between accuracy and coverage, thus 

motivating us to use a Wikipedia-based measure for SR 

estimation.  

4) Practicality: In general, web search-based SR measures 

require initiating a web search request for each query [27]. 

This approach raises a major practicality issue because only a 

limited number of requests can be initiated in a certain amount 

of time, and usually there is a limit on the length of the query 

that can return sensible results. LKBs, such as, WordNet, do 

not suffer from the performance problem as they are usually 

available locally. Some CKB approaches suffer from that 

problem too, which however, is not the case for Wikipedia as 

its entire corpus can be downloaded
1
 and treated as a local 

data source.   
Overall, Wikipedia-based measures seem to be achieving 

significantly better results in relevant tasks than other 
knowledge sources. Wikipedia achieves a balance between 
accuracy and coverage, overcoming the limited coverage and 
scalability issue of LKBs, as well as the noise and practicality 
issues of web search-based SR measures.  

Among the different Wikipedia-based measures, ESA [43] 
has been proven the most robust method, outperforming related 
measures such as WikiRelate [35] and WLM [44], in achieving 
high correlation with human judgment and with reasonable 
computation overhead. It also compares text fragment, making 
it a more fit approach for tackling traceability tasks.  In 
addition, due to its flexibility, ESA has been extended to work 
in cross-lingual retrieval settings, which can be considered an 
extreme case of the vocabulary mismatch problem. 

ESA represents the meaning of texts in a high-dimensional 

weighted vector of concepts derived from Wikipedia. In 

details, given a text fragment T = {t1,…, tn}, and a space of 

Wikipedia articles C, initially, a weighted vector V is created 

for the text, where each entry of the vector vi is the tf.idf 

weight of the term ti in T. Using a centroid-based classifier 

[43], all Wikipedia articles in C are ranked according to their 

relevance to the text. Let <kj> be the strength of association of 

term ti with Wikipedia article cj, {cj  c1, c2, …, cn } (where N 

is the total number of Wikipedia articles). Then the semantic 

interpretation vector S for text T is a vector of length N, in 

which the weight of each concept cj is defined as: 

 

                                
    

                               

Entries of this vector reflect the relevance of the 
corresponding articles to text T. Finally SR between two texts 
is calculated as the cosine between their corresponding vectors. 

                                                           
1
 http://en.wikipedia.org/wiki/Wikipedia:Database_download 

186



B. Base Case Selection 

To assess performance of ESA, a base case retrieval 
mechanism that is known to do well in traceability tasks is 
needed to put ESA performance in perspective. In our 
experiment, two IR methods, namely LSI and VSM, are used 
as base cases. As mentioned earlier, both methods are among 
the most utilized methods in the traceability literature, known 
to achieve a comparable performance on different datasets. 
Also, comparing three different methods with various levels of 
semantic support will help us better understand the role of 
semantics in recovering traceability information. Next is a 
detailed description of both methods. 

 
Vector Space Model (VSM): In VSM, each document is 

composed by a set of terms T = {t1… tn} and every term  ti is 
assigned  a weight  wi using a certain weighting scheme. The 
terms in T are regarded as the coordinate axis in N-dimensional 
coordinate system and the terms weights W = {w1… wn} are 
the corresponding values. Mathematically, if Q and D were two 
artifacts’ represented in the vector space, then their similarity is 
measured as the cosine of the angle between them:  

 

                                              
      

 
    

    
  

       
  

   

                 

In this study, we adopt tf.idf as our main weighting scheme, 
where qi = tfi(q) • idfi, di = tfi(d) • idfi. tfi(d) and tfi(q) are term 
frequency of  termi  in Q and D respectively.  idfi is the inverse 
document frequency, and is computed as idfi = log2(t/dfi), 
where t is the total number of profiles in the corpus and dfi is 
the number of profiles in which termi occurs.  

 

 Latent Semantic Indexing (LSI): LSI is a dimension 

reduction technique based on Singular Value Decomposition 

(SVD) [45]. It tries to find new coordinates of query and 

document vectors in a reduced k-dimensional space, then 

match them. LSI starts by constructing a term-document 

matrix (A) for terms and documents in the corpus.  This matrix 

is usually huge and sparse. In a simpler design this matrix can 

contain basic word counts; however, in traceability research it 

is common to use tf.idf or log-entropy weights, such that, the 

final matrix contains the weighted vectors of all the documents 

in the corpus.  SVD is then applied to decompose A into three 

new matrices A = USV
T
 where T stands for transpose. 

Dimensionality reduction is then performed to produce 

reduced approximations of <U, S, V
T
> by keeping the top k 

eigenvalues of these matrixes. These reduced matrixes can be 

described as <Uk, Sk, V
T

K>.  The best value of  k can be 

obtained experimentally; however, a value in the range of [100 

- 300] is frequently used. From the new reduced space we can 

derive the equation V = A
T
US

-1
. Now assuming A is a matrix 

with n > 1 documents, for a given document vector d in A, d 

can be expressed as d = d
T
US

-1
. In LSI, the query is also 

treated as a document, which is the case in traceability, where 

the query itself is a usecase or a piece of code. The query q 

can be expressed in the new coordinates of the reduced space 

as q = q
T
US

-1
. Finally, in the k-reduced space q and d can be 

represented as d = d
T
UkSk

-1
 and q = q

T
UkSk

-1
 respectively. The 

similarity of q and d can then be calculated as the cosine 

measure: 

   sim(q, d) = sim(q
T
UkSk

-1
, d

T
UkSk

-1
)                    (3) 

 

C. Evaluation Metrics 

Sundaram et al. identified a number of primary and 

secondary measures to assess the performance of different 

tracing tools and techniques [47]. These measures can be 

categorized, based on their operation, into two groups as 

follows:  

Quality: Precision (P) and Recall (R) are the standard IR 

metrics to assess the quality of the different traceability tools 

and techniques. Recall measures coverage and is defined as 

the percentage of correct links that are retrieved. Precision 

measures accuracy and is defined as the percentage of 

retrieved candidate links that are correct. F-measure is the 

harmonic mean of recall and precision. Based on the fact that, 

automated tracing methods emphasize recall over precision 

[4], the F2 = 5 ∙ (P ∙ R) / (4 ∙ P + R) measure which weights 

recall twice as much as precision is usually used.  

                  
Browsability: Browsability is the extent to which a 

presentation eases the effort for the analyst to navigate the 

candidate traceability links. For a tracing tool or a method that 

uses a ranked list to present the results, it is important to not 

only retrieve the correct links but also to present them properly 

to ensure an effective and efficient comprehension process. 

Being set-based measures, precision, recall and F2 measure do 

not give any information about the list browsability.  To reflect 

such information other metrics are usually used. Assuming h 

and d belong to sets of system artifacts H = {h1… hn} and D = 

{d1,…, dm}; L = {(d, h) | sim(d,h)} is a set of candidate 

traceability links generated by the tool. LT is the subset of true 

positives (correct links) in L of true links, a link in this subset 

is described as (d,h). LF is the subset of false positives in L, a 

link in this set is described using the notion (d',h'). Secondary 

metrics can be described as: 

 

 Mean Average Precision (MAP):  is a measure of quality 

across recall levels. It can be described as the mean 

precision scores after each relevant link retrieved. 

Equation 4 describes MAP. A method or tool that 

produces a higher MAP is superior.  

 

      
 

   
  

 

  

   

    

                                         
  

     
 

 DiffAR: measures the contrast of the list, it can be 

described as the difference between the average similarity 

of true positives and false positives in a ranked list. A list 

with higher DiffAR has a clearer distinction between its 

correct and incorrect links, hence, is considered superior. 

Equation 5 describes DiffAR. 
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 Lag: can be described as the average of the number of 

false positives with higher similarity score that precede 

each true positive in the ranked list, in other words, the 

average number of incorrect links that appears before 

each correct link in the list. Equation 6 describes Lag. 

 

                        
                

   
                                          

D. Datasets 

Three datasets are used to conduct the experiment in this 
paper including: CM-1, eTour, and iTrust. Next, is a 
description of these datasets and their application domains:  

  

 iTrust:  a medical application, developed by software 
engineering students at North Carolina State University 
(USA). It provides patients with a means to keep up 
with their medical history and records and to 
communicate with their doctors. The dataset contains 
314 requirements-source code links

2
. 

 eTour: an electronic tourist guide application 
developed by final year students at the University of 
Salerno (Italy). eTour was selected as experimental 
object in this experiment because its source code 
contains a combination of English and Italian words, 
which is considered an extreme case of vocabulary 
mismatch. The dataset contains 394 requirements-
source code links

3
. 

 CM-1: consists of a complete requirements (high-level) 
document and a complete design (low-level) document 
for a NASA scientific instrument. The project source 
code was written in C with approximately 20K lines of 
code. It has 235 high-level requirements and 220 
design elements. The traceability matrix contains 361 
actual requirement-requirement traces

4
.  

Table I shows the characteristics of each dataset. The table 
shows the size of the system in terms of lines of source code 
(LOC), lines of comments (COM), source and target of 
traceability links – use cases (UC) or requirements (Req.), and 
finally, the number of correct traceability links. 

TABLE I.  EXPERIMENT DATASETS 

 General Information Traceability Information 

 LOC COM Source Target Links 

iTrust 18.3K 6.3K UC SC 314 

eTour 17.5K 7.5K UC SC 394 

CM1 20K N/A Req. Req. 361 

E. Implementation 

We extended our tool TraCter, previously introduced in 
[48] with LSI and ESA components to conduct the experiment 
described in this paper. ESA implementation was guided 
through several online resources

5
. These resources include 

                                                           
2
 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php. 

3
 http://www.cs.wm.edu/semeru/tefse2011/. 

4
 http://mdp.ivv.nasa.gov/mdp_glossary.html#CM1, 2005. 

5
 http://www.cs.technion.ac.il/~gabr/resources/code/esa/esa.html 

tools for parsing Wikipedia dumps (e.g. WikiPrep
6
) and 

carrying out ESA analysis. Wikipedia 2009 dumps were used 
in our implementation. Also, using the indexing component 
provided in the tool, all three datasets were indexed and stored 
in the system database, along with their answer sets for 
evaluation purposes. A detailed description of the indexing 
process can be found in our previous work [31]. The tool is 
also provided with an evaluation component to compute and 
record the different performance measures under different 
execution settings. 

IV. RESULTS AND ANALYSIS 

Tables II and Figures 2-6 show the data collected during the 
experiment. Values of a certain measure (R, P, F2, MAP, 
DiffAR, and Lag) are calculated after applying a certain 
retrieval method (VSM, LSI and ESA) to trace all the usecases 
in a particular dataset, averaged over a certain threshold level 
(0.2, 0.4, 0.6, 0.8 and 1 - cutting off values from the top of the 
retrieved list). To simplify the statistical analysis, each dataset 
is analyzed separately. Analysis of variance is carried out to 
draw general conclusions about the performance. We used the 
0.05 alpha level (α=0.05) to test the significance. Analysis 
results are shown in Tables II - IV. This section describes and 
discusses these results. 

A. Primary Measures Analysis 

Recall: Figure 2 shows the recall data. Analysis of variance 
over the results (Table II) shows that ESA significantly 
outperforms VSM on all three datasets.  However, it shows a 
mixed performance comparing to LSI.  Only on iTrust dataset 
ESA significantly outperforms LSI. The results also show that 
even though LSI starts slowly with significantly poorer 
performance at lower thresholds, it usually catches up to ESA 
at higher levels. However, unlike LSI, which changed 
dramatically after a certain threshold, ESA shows more stable 
performance increasing gradually with the increase of the 
threshold level in all three datasets.  In general, analysis of 
recall shows that, ESA was successful in reducing the omission 
error by capturing more correct links than a standard VSM, and 
showing a more stable performance than LSI. 

 
Precision:  Figure 3 shows the precision for each dataset. 

Analysis of variance of precision results (Table II) shows that 
VSM significantly outperforms ESA in iTrust and eTour 
datasets. However, the performance difference is not 
significant in CM1. The results also show that ESA 
significantly outperforms LSI in terms of precision in both 
CM1 and iTrust datasets. ESA also slightly outperforms LSI in 
eTour, however, improvement in the performance was not 
statistically significant. As shown in the recall analysis, at 
higher threshold levels, LSI was able to catch up with ESA in 
terms of recall, which was reflected in the precision as a result 
of the negative correlation between precision and recall. Again, 
CM1 has shown a somewhat different behavior. While in the 
eTour and iTrust datasets VSM outperforms ESA significantly, 
on CM1 the difference between VSM and ESA was not 
statistically significant. 

 

                                                           
6
 http://www.cs.technion.ac.il/~gabr/resources/code/wikiprep/ 

188



        

Fig. 2.  Recall: iTrust, eTour and CM1 (x-axis: threshold level, y-axis: recall value) 

              

Fig. 3.  Precision: iTrust, eTour and CM1(x-axis: threshold level, y-axis: precision value) 

            
Fig. 4.  MAP: iTrust, eTour and CM1(x-axis: threshold level, y-axis: MAP value) 

TABLE II.  QUALITY MEASURES' STATISTICAL ANALYSIS RESULTS 

 Recall Precision F2 
ESA X VSM ESA X LSI VSM X LSI ESA X VSM ESA X LSI VSM X LSI ESA X VSM ESA X LSI VSM X LSI 

F p F p F P F P F p F p F p F p F p 

ITrust 14.69 .019 9.78 .035 .79 .423 10.08 .034 13.33 .02 11.44 .028 12.250 .019 21.806 .035 16.807 .015 

eTour 34.86 .004 3.43 .137 .023 .881 15.577 .017 1.761 .255 8.94 .040 87.11 .001 3.432 .138 24.299 .008 

CM1 10.28 .033 3.63 .129 .35 .587 2.25 .21 42.25 .003 16.0 .016 1.882 .242 38.368 .003 18.843 .012 

TABLE III.  BROWSABILITY MEASURES' STATISTICAL ANALYSIS RESULTS 

 MAP DiffAR Lag 
ESA X VSM ESA X LSI VSM X LSI ESA X VSM ESA X LSI VSM X LSI ESA X VSM ESA X LSI VSM X LSI 

F p F p F p F p F p F p F p F p F p 

ITrust 493.442 .00 .615 .447 818.0 .00 250.01 .00 112.66 .00 306.0 .00 28.930 .006 15.251 .017 24.369 .008 

eTour 1125.0 .00 278.679 .00 1060.89 .00 140.167 .00 81 .001 361 .00 14.224 .02 34.565 .004 22.5 .009 

CM1 200.643 .00 14.069 .019 89.814 .001 216 .00 13.50 .021 182 .00 19.231 .012 9.112 .039 10.530 .032 

 

In fact at higher threshold levels, ESA was able to match 
VSM precision levels, which is a good sign that ESA, even 
though it achieved significantly higher recall rates at higher 
threshold levels, it still managed to keep the precision under 
control. 

 

F2 Measure: Analysis of variance of F2 data (Table IV) 
shows that VSM is still dominating ESA and LSI, achieving 
statistically significant performance over LSI in all datasets. In 
CM1, ESA was able to almost match VSM performance, as no 
statistically significant difference was detected. Overall, F2 
analysis shows very similar patterns to the precision analysis 

however, the difference in the performance is more obvious 
due to the fact that the recall is also integrated in F2, making the 
difference more obvious. 

B. Secondary Measures Analysis 

MAP: Figure 4 shows the MAP values of the three datasets. 
Analysis of variance (Table III) shows that VSM significantly 
outperforms LSI and ESA in all three datasets. It also shows 
that ESA significantly outperforms LSI in eTour and CM1, 
however, no significant difference in the performance is 
detected in iTrust dataset. 
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TABLE IV.  F2 VALUES 

 iTrust eTour CM1 

 VSM 
LS

I 
ESA VSM LSI ESA VSM LSI ESA 

.2 .38 .19 .28 .44 .18 .31 .22 .11 .19 

.4 .29 .14 .20 .38 .19 .23 .14 .06 .13 

.6 .19 .11 .16 .27 .15 .17 .08 .04 .08 

.8 .17 .11 .14 .24 .14 .15 .07 .03 .07 

1 .17 .11 .14 .24 .14 .15 .07 .03 .07 

 
Overall, ESA achieves a mediocre performance in terms of 

browsability, while it was more successful than LSI, it still 
could not beat VSM, due to the fact that more links were 
retrieved. However, it is able to achieve stable patterns at 
different threshold levels. 

 
DiffAR: DiffAR data is shown in Figure 5. Such superior 

performance of VSM on this particular measure was actually 
expected due to the nature of its operation. VSM makes clear 
cut decisions when deciding whether two words are similar or 
not. However, in ESA, things are less obvious, due to the fact 
that a score is given to each of the two terms even though if 
they do not match lexically. Among the three methods, LSI 
produced the least DiffAR value. This can be explained based 
on the mathematical nature of LSI which produces really small 
similarity scores, as several multiplication processes are carried 
out over small numbers in the range [0 - 1].   

 

Lag: Lag data is shown in Figure 6. VSM still outperform 
the other two methods significantly in all three datasets, but 
again, less links were retrieved using VSM, so such behavior is 
expected. The results also show that ESA is achieving 
significantly better performance than LSI in all datasets. This 
difference becomes obvious at higher thresholds, which shows 
that LSI tends to scatter the links all over the list, with high 
separation levels between the correct links, while the results are 
more centered in VSM and ESA. Also, it shows that LSI gives 
really low relevance scores to true positives which can be 
considered as a sign of random behavior. 

V. THREATS TO VALIDITY 

Several factors can affect the validity of our study. 
Construct validity is the degree to which the variables 
accurately measure the concepts they purport to measure [49]. 
In our experiment, there were minimal threats to construct 
validity as standard IR measures (recall, precision, and F2), 
which have been used extensively in requirements traceability 
research, were used to assess the different methods applied. 
These measures were also complemented by another set of 
secondary measures (MAP, DiffAR, and Lag) that are used to 
provide more insights into the results, in particular, the 
browsability of the generated lists. We believe that these two 
sets of measures sufficiently capture and quantify the different 
aspects of tracing methods evaluated in this study.  

Threats to external validity impact the generalizability of 
results. In particular, the results of this study might not 
generalize beyond the underlying experimental settings [49]. A 
major threat to the external validity comes from the datasets 
used in this experiment. In particular, two of these datasets 
were developed by students and may not be representative of a 
program written by industrial professionals. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  DiffAR values for three datasets. 

 

 

 

 

 

 

 

 

 

 

 

       

Fig. 6.  Lag values for three datasets. 

Also, all three of our datasets are limited in size which 
raises some scalability questions.   However, we believe the 
use of three datasets, from different application domains, 
including requirements-to-source-code and requirement-to-
requirement traceability tasks, helps mitigate related threats. 
Finally, specific design decisions and heuristics used during the 
implementation can also limit the results applicability. Such 
decisions include, using Wikipedia 2009 in ESA, using tf.idf 
weights and the heuristic value of k= 100 to calibrate LSI. 

VI. DISCUSSION AND  IMPLICATIONS 

The research in this paper raises several questions about the 
nature of the automated traceability problem and its potential 
solutions. The first part of our definition of the problem states a 
100% recall.  This is based on the consensus among 
traceability researchers that an error of commission (false 
positive) is easier to deal with than an error of omission (false 
negative). Analysis of recall shows that ESA was indeed 
successful in achieving a better performance over VSM, 
reaching almost a 100% recall rate in all three datasets. LSI 
was also able to hit a maximum recall at higher threshold 
levels; however, it showed significantly poorer performance at 
lower thresholds. Based on these results, we argue that 
integrating human judgment, through the use of SR techniques, 
will help to leverage more advanced matching schemes, hence, 
achieving better recall. This argument also opens the door for 
several other questions related to using semantics. For 
example: how much semantics are needed?  What effect does 
semantics have on the precision? And which semantically 
enhanced technique has more potential in achieving the desired 
100% precision level stated early in our definition? 
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ESA can be considered as a more intelligent extension of 
LSI that looks beyond the classical semantic relations of 
synonyms and polynyms. Our analysis shows that LSI was able 
to match ESA recall at higher threshold levels. However, that 
came with a significant amount of noise that took the precision 
to significantly lower levels. To understand this behavior more, 
we refer to the secondary measures analysis, which shows that 
LSI was the least successful in terms of browsability, failing to 
distinguish between true and false positives, and also, 
scattering true links all over the list.   

To gain a better insight into these three methods’ internal 
operations, we pick two sample sub vectors (q1, d1) from one of 
our datasets, where (q1   Q1) and (d1   D1). q1 = <user, 
credential> and d1 = <authenticate, email, password>. q1  
represent a trace query, and d1 is one of its true links. We 
observe the similarity scores given by each one of the exploited 
IR methods to each pair of terms in q1   d1. Results are shown 
in Table V. 

TABLE V.  SIMILARITY COMPARISON VIA A SAMPLE TRACE 

 
VSM LSI ESA 

<user, authenticate> 0.00 0.00 .022 
<user, email> 0.00 .0025 .766 
<user, password> 0.00 .0020 .766 
<credential, authenticate> 0.00 .0025 .860 
<credential, password> 0.00 .0030 .896 
<credential, email> 0.00 .0030 .876 

Similarity: 0.00 .0027 .882 

 
VSM failed to identify any relations between the two 

vectors, due to the lack of overlapping text. LSI, however, was 
able to detect some relatedness between different terms, while 
some of these relations might be explained based on LSI 
operation, such as a polynym relation between <credential, 

password>, there is no clear indication that that was the case, or 
just a mathematical coincidence. Finally ESA, was successfully 
able to detect a very strong similarity among the different 
terms, correlating the most with our personal judgment.            

Such poor performance of LSI can be explained based on 
the operation of LSI. LSI builds its underlying model from the 
knowledge available within the system pool of artifacts, which 
is usually limited in size and coverage. This leads to a random 
behavior when trying to leverage semantic relations. ESA 
extends the knowledge base beyond the corpus, to cover more 
concepts [37]. The consideration of such relations gives ESA 
more stability and accuracy in its performance. Based on that, 
we argue that the injection of more relation has a positive 
impact on the performance. Even though LSI can be considered 
as a measure of SR, ESA can make more reliable relatedness 
decisions as its operation is independent from the amount of 
knowledge available within the system. Finally, its important to 
point out that although the proposed approach integrates human 
judgment, it does not actually utilize the judgment of experts. 
Instead it uses a general collection of documents (Wikipedia) 
which can be modified by anyone with or without knowledge 
of a particular software system. 

VII. CONCLUSIONS 

In this paper we proposed an approach based on Semantic 
Relatedness (SR) for automatic traceability link recovery. We 
described a set of requirements for integrating SR into the 
automated tracing process and conducted an experimental 
evaluation to assess our approach.   

The experiment was conducted using three datasets from 
different application domains. Analysis of primary results 
showed that SR achieve a balance between LSI and VSM. It 
significantly outperforms the recall of VSM and significantly 
outperforms the precision of LSI (over two of our datasets), 
showing more stable performance at different threshold levels.  
In terms of secondary measures, VSM has shown the best 
performance. ESA achieved a mediocre performance, 
outperforming LSI, which exhibits the worst performance in 
terms of browsability. The research in this paper raised several 
questions related to various aspects of the automated tracing 
problem including semantics and human involvement. Future 
work will be focused on conducting more experiments using 
industrial size datasets.  Also, the practicality of the approach 
will be evaluated through proper usability studies. 
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