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Bio-surveillance from Big [

What is this talk about ...

* Suite of statistical and machine learning tools for:

— discovering inherent statistical structure of domain
specific big data

— providing testable hypotheses (“actionable insights”)

* Challenges faced in developing a computational
infrastructure:

— Volume/Velocity

— Scaling algorithms



Analyzing Big Data

* Event Detection: time-points where
there is deviation from “normal”
behavior

 Multi-scale Feature Extraction:
intrinsic structure of data

* Cluster & Visualize: simplifying the
interpretation for meaningful
insights

vy jolyon.co.uk

Data = Insights = Discovery
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Part 1: Online Event Detection

* Spatio-temporal correlations

* Dynamical clustering



Motivation: Detecting spatio-temporally correlated
patterns in real-time data streams (Twitter)

A
é Y

* Which geographic regions exhibit correlated patterns in

twitter patterns?
— Indicative of emergent patterns in spread of disease/ outbreak
— Can be across diseases or regions or along time

* At what time-points do these patterns change?
— Anomalies indicative of sudden surges in infections

varying patterns in disease association.

Neoformix: Visualizing Twitter data
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Tensor representation for intra-molecular distances

Flu associated markers
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e Conceptually the data is
a collection of matrices
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represented as a tensor

networks

Tensors are N-dimensional matrices, that are

useful to capture multi-way dependencies 3D tensor of outbreak terms +
locations evolving over time



Online Tensor Analysis
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Translating to a small world!

* Which regions of the
molecule are moving
together?

e At which time-points are
the spatio-temporal
patterns of motions

changing?
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Data = Insights = Discovery:

Time-points where spatio-temporal correlations change
can be used to control simulations
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Key Contributions

An online tool for data mining:

1. Anomaly detection:
— time points where social media patterns change

— Can be used to track disease outbreak

2. Spatio-temporal pattern discovery:

— cluster geographical regions based on media patterns

3. Data summarization



odor dimensions

Part 2: Discovering inherent statistical structure in
big data

* Organizing high dimensional spaces

* Odor perception



* Odor perception:
— What is the perceptual space of the
human olfactome?

e 31 million molecules from
Pubchem!!

— Big Data: How to organize this
space?
* We don’t have this organization:

— Can we build this from data?

— Statistical characteristics from both
psychophysics & chemical spaces




Using semi-supervised learning to “odor” label
the Pubchem

* Label small portion of the data _
with odor percepts
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— Derive physio-chemical S 4N
features from labeled data ' )
* Graph-kernel approaches to 1] o Lo
quickly compare compounds __ | AT
* Propagate labels on successively | @1
to larger data sets (flavornet, | 2222222 ;ﬁ
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e Test / Validate / Refine \



Building a perceptual model of odors on Atlas of
Odor Chemical Percepts (AOBCP)

W, (‘fragrant’/'sweet’)

144 odors; ~150 odor descriptors

Use non-negative matrix
factorization for dimensionality
reduction

— Use bi-clustering to associate
odors with perception
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Clustering odors based on perceptual qualities
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Data -2 Insights = Discovery

Odors with similar perception share unique physio-chemical

signatures
* Fruits and sewer have o gl eFee k.
distinct chemical features: ‘g Bglgle gt fogfﬁ\c;&o%ﬁy&c
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Key Contributions & Future Work

A machine learning framework to relate chemicals to their odor
percepts:

* Discovery of underlying statistical structure within large-scale
datasets

— linking “chemical nature” to “odor perception”

— linking “odor perception” to “chemical signatures”

* Organizing odors into a perceptual frame of reference using
novel machine learning tools

— integration with psycho-physics experiments

— expanding the compounds to include a larger chemical repertoire



Part 3: Moving to the cloud...
* Organizing high dimensional spaces
* Auto-regressive models

* Bio-medical imaging applications



Motivation: Automate detection of patterns
from disparate, distributed data N ﬂ

Flu associated markers

* Data: Twitter Feed / Social
media 1
— Globally distributed data
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— Large volume

* Temporal models:

— patterns in disease spread

e Generative models:

— predicting how disease may
spread




Example Implementation: Disease Diagnostics
using BioViDA

1. Data Transfer and Integration

* Image/Video data in 2D, 3D and 4D

+ Ciliary motion data per patient:
order of gigabytes

+ Large-scale, longitudinal study
will generate terabytes of data

+ Patient data collected so far in
Dr. Lo’s lab: ~200 controls and
~200 diseased
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2. Visualization and

Analysis
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Computational steps in the
quantitative analysis of biomedical
data
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Ciliary Motions Drug-Discovery colls
:>- Data size: Tera to Petabytes

.

» 20-100 drugs/biological agents at

multiple concentrations, for multiple
time points in live cells.

* For each of the 2,000-200,000

treatments, profile 1,000-10,000

3. Collaborative Interpretation
and Verification

~ Cloud

Researcher Clinician

Impact: high-throughput research
pursuits, time-critical clinical
applications, biomedical science cloud
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Dose Range Beat Rate
Finding (Hz)
Chloroquine 251185
Amiodarone 0.512
Menadione 0.995
Vehicle Control 2.25




Bio-surveillance and the Cloud

Bio-surveillance data
* is BIG and NOISY

* requires repetitive analysis in chunks

‘m

 modeling involves linear algebra and
statistics =
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Thank You !!!
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